Difference between revisions of "Data Center"

From OnnoWiki
Jump to navigation Jump to search
 
(55 intermediate revisions by the same user not shown)
Line 1: Line 1:
A '''data center''' ([[American English]]) or '''data centre''' ([[British English]]) is a [[Building|facility]] used to house [[Computer|computer systems]] and associated components, such as [[telecommunication]]s and [[computer data storage|storage systems]]. It generally includes [[Redundancy (engineering)|redundant]] or backup components and infrastructure for [[power supply]], data communications connections, environmental controls (e.g. air conditioning, fire suppression) and various security devices. A large data center is an industrial-scale operation using as much electricity as a small town.
+
'''data center''' ([[American English]]) atau '''data centre''' ([[British English]]) adalah [[Bangunan|fasilitas]] yang digunakan untuk menampung [[Komputer| sistem komputer]] dan komponen terkait, seperti [[telekomunikasi]] dan [[penyimpanan data komputer|sistem penyimpanan]]. Ini umumnya mencakup [[Redundansi (teknik)|redundan]] atau komponen dan infrastruktur cadangan untuk [[catu daya]], koneksi komunikasi data, kontrol lingkungan (mis. AC, pencegah kebakaran) dan berbagai perangkat keamanan. Pusat data besar adalah operasi skala industri yang menggunakan listrik sebanyak kota kecil.
  
==History==
+
==Sejarah==
Data centers have their roots in the huge computer rooms of the 1940s, typified by [[ENIAC]], one of the earliest examples of a data center. Early computer systems, complex to operate and maintain, required a special environment in which to operate. Many cables were necessary to connect all the components, and methods to accommodate and organize these were devised such as standard [[19-inch rack|racks]] to mount equipment, [[raised floor]]s, and [[cable tray]]s (installed overhead or under the elevated floor). A single [[Mainframe computer|mainframe]] required a great deal of power, and had to be cooled to avoid overheating. Security became important – computers were expensive, and were often used for [[military]] purposes. Basic design-guidelines for controlling access to the computer room were therefore devised.
+
Data center berawal pada ruang komputer besar di tahun 1940-an, yang ditandai dengan [[ENIAC]], salah satu contoh paling awal dari data center. Sistem komputer awal, rumit untuk dioperasikan dan dipelihara, membutuhkan lingkungan khusus untuk beroperasi. Banyak kabel diperlukan untuk menyambungkan semua komponen, dan metode untuk menampung dan mengaturnya telah dirancang seperti [[rak|rak|19 inci]] standar untuk memasang peralatan, [[raised floor]], dan [[cable tray]] (dipasang di atas kepala atau di bawah lantai yang ditinggikan). Satu [[Komputer mainframe|mainframe]] membutuhkan banyak daya, dan harus didinginkan untuk menghindari panas berlebih. Keamanan menjadi penting – komputer mahal, dan sering digunakan untuk tujuan [[militer]]. Oleh karena itu, pedoman desain dasar untuk mengontrol akses ke ruang komputer telah dibuat.
  
During the boom of the microcomputer industry, and especially during the 1980s, users started to deploy computers everywhere, in many cases with little or no care about operating requirements. However, as [[information technology]] (IT) [[IT operations|operations]] started to grow in complexity, organizations grew aware of the need to control IT resources. The advent of [[Unix]] from the early 1970s led to the subsequent proliferation of freely available [[Linux]]-compatible [[personal computer|PC]] operating-systems during the 1990s. These were called "[[Server (computing)|servers]]", as [[timesharing]] [[operating system]]s like Unix rely heavily on the [[client-server model]] to facilitate sharing unique resources between multiple users. The availability of inexpensive [[Networking hardware|networking]] equipment, coupled with new standards for network [[structured cabling]], made it possible to use a hierarchical design that put the servers in a specific room inside the company. The use of the term "data center", as applied to specially designed computer rooms, started to gain popular recognition about this time.
+
Selama ledakan industri komputer mikro, dan khususnya selama tahun 1980-an, pengguna mulai menyebarkan komputer di mana-mana, dalam banyak kasus dengan sedikit atau tanpa peduli tentang persyaratan pengoperasian. Namun, karena [[teknologi informasi]] (TI) [[operasi TI|operasi]] mulai tumbuh dalam kompleksitas, organisasi semakin sadar akan kebutuhan untuk mengontrol sumber daya TI. Munculnya [[Unix]] dari awal 1970-an menyebabkan proliferasi selanjutnya dari sistem operasi [[Linux]]-kompatibel [[komputer pribadi|PC]] yang tersedia secara bebas selama tahun 1990-an. Ini disebut "[[Server (komputasi)|server]]", sebagai [[timesharing]] [[sistem operasi]] seperti Unix sangat bergantung pada [[model klien-server]] untuk memfasilitasi berbagi sumber daya unik antara banyak pengguna. Ketersediaan peralatan [[Perangkat keras jaringan|jaringan]] yang murah, ditambah dengan standar baru untuk jaringan [[pengkabelan terstruktur]], memungkinkan untuk menggunakan desain hierarkis yang menempatkan server di ruangan tertentu di dalam perusahaan. Penggunaan istilah "data center", sebagaimana diterapkan pada ruang komputer yang dirancang khusus, mulai mendapat pengakuan populer saat ini.
  
The boom of data centers came during the [[dot-com bubble]] of 1997–2000. [[Company|Companies]] needed fast [[Internet]] connectivity and non-stop operation to deploy systems and to establish a presence on the Internet. Installing such equipment was not viable for many smaller companies. Many companies started building very large facilities, called '''Internet data centers''' (IDCs), which provide [[customer|commercial clients]] with a range of solutions for systems deployment and operation. New technologies and practices were designed to handle the scale and the operational requirements of such large-scale operations. These practices eventually migrated toward the private data centers, and were adopted largely because of their practical results. Data centers for cloud computing are called '''cloud data centers''' (CDCs). But nowadays, the division of these terms has almost disappeared and they are being integrated into a term "data center".
+
Ledakan pusat data terjadi selama [[dot-com bubble]] tahun 1997–2000. [[Perusahaan|Perusahaan]] memerlukan konektivitas [[Internet]] yang cepat dan pengoperasian tanpa henti untuk menerapkan sistem dan membangun kehadiran di Internet. Memasang peralatan seperti itu tidak layak untuk banyak perusahaan kecil. Banyak perusahaan mulai membangun fasilitas yang sangat besar, yang disebut '''Internet data center''' (IDC), yang menyediakan [[pelanggan|klien komersial]] berbagai solusi untuk penerapan dan pengoperasian sistem. Teknologi dan praktik baru dirancang untuk menangani skala dan persyaratan operasional dari operasi skala besar tersebut. Praktik-praktik ini akhirnya bermigrasi ke pusat data pribadi, dan diadopsi sebagian besar karena hasil praktisnya. Pusat data untuk komputasi awan disebut '''cloud data center''' (CDC). Namun saat ini, pembagian istilah-istilah tersebut hampir menghilang dan diintegrasikan ke dalam istilah "data center".
  
With an increase in the uptake of [[cloud computing]], business and government organizations scrutinize data centers to a higher degree in areas such as security, availability, environmental impact and adherence to standards. Standards documents from accredited [[professional]] groups, such as the [[Telecommunications Industry Association]], specify the requirements for data-center design. Well-known operational metrics for [[data availability|data-center availability]] can serve to evaluate the [[Business Impact Analysis|commercial impact]] of a disruption. Development continues in operational practice, and also in environmentally-friendly data-center design. Data centers typically cost a lot to build and to maintain.{{citation needed|date=September 2015}}
+
Dengan peningkatan penggunaan [[cloud computing]], organisasi bisnis dan pemerintah meneliti pusat data ke tingkat yang lebih tinggi di berbagai bidang seperti keamanan, ketersediaan, dampak lingkungan, dan kepatuhan terhadap standar. Dokumen standar dari grup [[profesional]] terakreditasi, seperti [[Telecommunications Industry Association]], menetapkan persyaratan untuk desain pusat data. Metrik operasional terkenal untuk [[data availability|data-center availability]] dapat digunakan untuk mengevaluasi [[Business Impact Analysis|commercial impact]] gangguan. Pengembangan berlanjut dalam praktik operasional, dan juga dalam desain data center yang ramah lingkungan. Data center biasanya menghabiskan banyak biaya untuk membangun dan memelihara.
  
==Requirements for modern data centers==
+
==Persyaratan untuk modern data center==
  
[[IT operations]] are a crucial aspect of most organizational operations around the world. One of the main concerns is [[business continuity]]; companies rely on their information systems to run their operations. If a system becomes unavailable, company operations may be impaired or stopped completely. It is necessary to provide a reliable infrastructure for IT operations, in order to minimize any chance of disruption. Information security is also a concern, and for this reason a data center has to offer a secure environment which minimizes the chances of a security breach. A data center must therefore keep high standards for assuring the integrity and functionality of its hosted computer environment. This is accomplished through redundancy of mechanical cooling and power systems (including emergency backup power generators) serving the data center along with fiber optic cables.
+
[[Operasi TI]] adalah aspek penting dari sebagian besar operasi organisasi di seluruh dunia. Salah satu perhatian utama adalah [[kelangsungan bisnis]]; perusahaan mengandalkan sistem informasi mereka untuk menjalankan operasi mereka. Jika suatu sistem menjadi tidak tersedia, operasi perusahaan dapat terganggu atau dihentikan sama sekali. Penyediaan infrastruktur yang andal untuk operasional TI diperlukan untuk meminimalkan kemungkinan gangguan. Keamanan informasi juga menjadi perhatian, dan untuk alasan ini pusat data harus menawarkan lingkungan yang aman yang meminimalkan kemungkinan pelanggaran keamanan. Oleh karena itu, data center harus menjaga standar tinggi untuk memastikan integritas dan fungsionalitas lingkungan komputer yang dihostingnya. Hal ini dicapai melalui redundansi pendinginan mekanis dan sistem daya (termasuk generator daya cadangan darurat) yang melayani data center bersama dengan kabel serat optik.
  
The [[Telecommunications Industry Association]]'s Telecommunications Infrastructure Standard for Data Centers specifies the minimum requirements for telecommunications infrastructure of data centers and computer rooms including single tenant enterprise data centers and multi-tenant Internet hosting data centers. The topology proposed in this document is intended to be applicable to any size data center.
+
Telecommunications Infrastructure Standard for Data Center [[Telecommunications Industry Association]] menetapkan persyaratan minimum untuk infrastruktur telekomunikasi data center dan ruang komputer termasuk data center perusahaan penyewa tunggal dan pusat data hosting Internet multi-penyewa. Topologi yang diusulkan dalam dokumen ini dimaksudkan agar dapat diterapkan pada data center dengan ukuran berapa pun.
  
 +
Telcordia GR-3160, ''NEBS Requirements for Telecommunications Data Center Equipment and Spaces'', memberikan panduan untuk ruang data center dalam jaringan telekomunikasi, dan persyaratan lingkungan untuk peralatan yang ditujukan untuk pemasangan di ruang tersebut. Kriteria ini dikembangkan bersama oleh Telcordia dan perwakilan industri. Mereka dapat diterapkan ke ruang data center yang menampung pemrosesan data atau peralatan Teknologi Informasi (TI). Peralatan tersebut dapat digunakan untuk:
 +
* Mengoperasikan dan mengelola jaringan telekomunikasi operator
 +
* Menyediakan aplikasi berbasis data center langsung ke pelanggan operator
 +
* Menyediakan aplikasi yang dihosting untuk pihak ketiga untuk memberikan layanan kepada pelanggan mereka
 +
* Berikan kombinasi dari ini dan aplikasi data center serupa
  
Telcordia GR-3160, ''NEBS Requirements for Telecommunications Data Center Equipment and Spaces'', provides guidelines for data center spaces within telecommunications networks, and environmental requirements for the equipment intended for installation in those spaces. These criteria were developed jointly by Telcordia and industry representatives. They may be applied to data center spaces housing data processing or Information Technology (IT) equipment. The equipment may be used to:
+
Pengoperasian data center yang efektif memerlukan investasi yang seimbang baik dalam fasilitas maupun peralatan yang ada. Langkah pertama adalah menetapkan lingkungan fasilitas dasar yang sesuai untuk pemasangan peralatan. Standardisasi dan modularitas dapat menghasilkan penghematan dan efisiensi dalam desain dan konstruksi data center telekomunikasi.
* Operate and manage a carrier's telecommunication network
 
* Provide data center based applications directly to the carrier's customers
 
* Provide hosted applications for a third party to provide services to their customers
 
* Provide a combination of these and similar data center applications
 
  
Effective data center operation requires a balanced investment in both the facility and the housed equipment. The first step is to establish a baseline facility environment suitable for equipment installation. Standardization and modularity can yield savings and efficiencies in the design and construction of telecommunications data centers.
+
Standarisasi berarti rekayasa bangunan dan peralatan terpadu. Modularitas memiliki manfaat skalabilitas dan pertumbuhan yang lebih mudah, bahkan ketika prakiraan perencanaan kurang optimal. Untuk alasan ini, data center telekomunikasi harus direncanakan dalam blok bangunan berulang dari peralatan, dan peralatan daya dan pendukung (pengkondisian) yang terkait jika dimungkinkan. Penggunaan sistem terpusat khusus memerlukan perkiraan kebutuhan masa depan yang lebih akurat untuk mencegah mahalnya pembangunan, atau mungkin lebih buruk — dalam pembangunan yang gagal memenuhi kebutuhan di masa depan.
  
Standardization means integrated building and equipment engineering. Modularity has the benefits of scalability and easier growth, even when planning forecasts are less than optimal. For these reasons, telecommunications data centers should be planned in repetitive building blocks of equipment, and associated power and support (conditioning) equipment when practical. The use of dedicated centralized systems requires more accurate forecasts of future needs to prevent expensive over construction, or perhaps worse — under construction that fails to meet future needs.
+
Data center "lights-out", juga dikenal sebagai data center yang digelapkan atau gelap, adalah data center yang, idealnya, menghilangkan kebutuhan akan akses langsung oleh personel, kecuali dalam keadaan luar biasa. Karena kurangnya kebutuhan staf untuk masuk ke data center, maka bisa dioperasikan tanpa penerangan. Semua perangkat diakses dan dikelola oleh sistem jarak jauh, dengan program otomasi yang digunakan untuk melakukan operasi tanpa pengawasan. Selain penghematan energi, pengurangan biaya kepegawaian, dan kemampuan untuk menemukan lokasi lebih jauh dari pusat populasi, menerapkan data center tanpa lampu mengurangi ancaman serangan berbahaya terhadap infrastruktur.
  
The "lights-out" data center, also known as a darkened or a dark data center, is a data center that, ideally, has all but eliminated the need for direct access by personnel, except under extraordinary circumstances. Because of the lack of need for staff to enter the data center, it can be operated without lighting. All of the devices are accessed and managed by remote systems, with automation programs used to perform unattended operations. In addition to the energy savings, reduction in staffing costs and the ability to locate the site further from population centers, implementing a lights-out data center reduces the threat of malicious attacks upon the infrastructure.
+
Ada kecenderungan untuk memodernisasi data center untuk memanfaatkan kinerja dan [[Efisiensi listrik|efisiensi energi]] peningkatan peralatan dan kemampuan TI yang lebih baru, seperti [[cloud computing]]. Proses ini juga dikenal sebagai transformasi data center.
  
There is a trend to modernize data centers in order to take advantage of the performance and [[Electrical efficiency|energy efficiency]] increases of newer IT equipment and capabilities, such as [[cloud computing]]. This process is also known as data center transformation.
+
Organisasi sedang mengalami pertumbuhan TI yang cepat tetapi data center mereka menua. Perusahaan riset industri [[International Data Corporation]] (IDC) menetapkan usia rata-rata sebuah data center adalah sembilan tahun. [[Gartner]], perusahaan riset lainnya, mengatakan data center yang berusia lebih dari tujuh tahun sudah usang. Pertumbuhan data (163 zettabytes pada tahun 2025) merupakan salah satu faktor yang mendorong perlunya modernisasi data center.
  
Organizations are experiencing rapid IT growth but their data centers are aging. Industry research company [[International Data Corporation]] (IDC) puts the average age of a data center at nine years old. [[Gartner]], another research company, says data centers older than seven years are obsolete. The growth in data (163 zettabytes by 2025) is one factor driving the need for data centers to modernize.
+
Pada bulan Mei 2011, organisasi riset pusat data [[Uptime Institute]] melaporkan bahwa 36 persen dari perusahaan besar yang disurvei diperkirakan akan kehabisan kapasitas TI dalam 18 bulan ke depan.
  
In May 2011, data center research organization [[Uptime Institute]] reported that 36 percent of the large companies it surveyed expect to exhaust IT capacity within the next 18 months.
+
Transformasi data center  mengambil pendekatan langkah demi langkah melalui proyek terintegrasi yang dilakukan dari waktu ke waktu. Ini berbeda dari metode tradisional pemutakhiran data center yang menggunakan pendekatan serial dan silo. Proyek tipikal dalam inisiatif transformasi pusat data meliputi standardisasi/konsolidasi, virtualisasi, [[otomatisasi]] dan keamanan.
  
Data center transformation takes a step-by-step approach through integrated projects carried out over time. This differs from a traditional method of data center upgrades that takes a serial and siloed approach. The typical projects within a data center transformation initiative include standardization/consolidation, virtualization, [[automation]] and security.
+
* Standardisasi/konsolidasi: Tujuan proyek ini adalah untuk mengurangi jumlah data center yang mungkin dimiliki organisasi besar. Proyek ini juga membantu mengurangi jumlah perangkat keras, platform perangkat lunak, alat, dan proses dalam data center. Organisasi mengganti peralatan data center yang sudah tua dengan yang lebih baru yang memberikan peningkatan kapasitas dan kinerja. Platform komputasi, jaringan, dan manajemen distandarisasi sehingga lebih mudah dikelola.
* Standardization/consolidation: The purpose of this project is to reduce the number of data centers a large organization may have. This project also helps to reduce the number of hardware, software platforms, tools and processes within a data center. Organizations replace aging data center equipment with newer ones that provide increased capacity and performance. Computing, networking and management platforms are standardized so they are easier to manage.
 
  
* Virtualize: There is a trend to use IT virtualization technologies to replace or consolidate multiple data center equipment, such as servers. Virtualization helps to lower capital and operational expenses, and reduce energy consumption. Virtualization technologies are also used to create virtual desktops, which can then be hosted in data centers and rented out on a subscription basis. Data released by investment bank Lazard Capital Markets reports that 48 percent of enterprise operations will be virtualized by 2012. Gartner views virtualization as a catalyst for modernization.
+
* Virtualisasi: Ada kecenderungan untuk menggunakan teknologi virtualisasi TI untuk mengganti atau menggabungkan beberapa peralatan data center, seperti server. Virtualisasi membantu menurunkan biaya modal dan operasional, serta mengurangi konsumsi energi. Teknologi virtualisasi juga digunakan untuk membuat desktop virtual, yang kemudian dapat dihosting di data center dan disewakan secara berlangganan. Data yang dikeluarkan oleh bank investasi Lazard Capital Markets melaporkan bahwa 48 persen operasi perusahaan akan divirtualisasikan pada tahun 2012. Gartner memandang virtualisasi sebagai katalis untuk modernisasi.
  
* Automating: Data center automation involves automating tasks such as [[provisioning]], configuration, [[Patch (computing)|patching]], release management and compliance. As enterprises suffer from few skilled IT workers, automating tasks make data centers operations more efficient.
+
* Otomatisasi: Otomatisasi data center melibatkan tugas otomatisasi seperti [[penyediaan]], konfigurasi, [[Patch (komputasi)|penambalan]], manajemen rilis, dan kepatuhan. Karena perusahaan kekurangan pekerja TI yang terampil, otomatisasi tugas membuat operasi data center menjadi lebih efisien.
  
* Securing: In modern data centers, the security of data on virtual systems is integrated with existing security of physical infrastructures. The security of a modern data center must take into account physical security, network security, and data and user security.
+
* Mengamankan: Di data center modern, keamanan data pada sistem virtual terintegrasi dengan keamanan infrastruktur fisik yang ada. Keamanan data center modern harus mempertimbangkan keamanan fisik, keamanan jaringan, dan keamanan data dan pengguna.
  
 
==Carrier neutrality==
 
==Carrier neutrality==
Today many data centers are run by [[Internet service provider]]s solely for the purpose of hosting their own and third party [[Server (computing)|servers]].
+
Saat ini banyak pusat data dijalankan oleh [[Internet Service Provider]]([[ISP]]) semata-mata untuk tujuan menghosting [[Server]] mereka sendiri dan pihak ketiga].
  
However traditionally data centers were either built for the sole use of one large company, or as [[carrier hotel]]s or [[Network-neutral data center]]s.
+
Namun secara tradisional data center dibangun hanya untuk penggunaan satu perusahaan besar, atau sebagai [[carrier hotel]] atau [[Network-neutral data center]].
  
These facilities enable interconnection of carriers and partners, and act as regional fiber hubs serving local business in addition to hosting content [[Server (computing)|servers]].
+
Fasilitas ini memungkinkan interkoneksi operator dan mitra, dan bertindak sebagai hub fiber regional yang melayani bisnis lokal selain menghosting konten [[Server]].
  
==Data center levels and tiers==
+
==Data center Level and Tier==
  
The [[Telecommunications Industry Association]] is a trade association accredited by ANSI (American National Standards Institute). In 2005 it published ANSI/TIA-942, Telecommunications Infrastructure Standard for Data Centers, which defined four levels of data centers in a thorough, quantifiable manner. TIA-942 was amended in 2008, 2010, 2014 and 2017. ''TIA-942:Data Center Standards Overview'' describes the requirements for the data center infrastructure. The simplest is a Level 1 data center, which is basically a [[server room]], following basic guidelines for the installation of computer systems. The most stringent level is a Level 4 data center, which is designed to host the most mission critical computer systems, with fully redundant subsystems, the ability to continuously operate for an indefinite period of time during primary power outages.
+
[[Telecommunications Industry Association]] adalah asosiasi perdagangan yang diakreditasi oleh ANSI (American National Standards Institutea). Pada tahun 2005 menerbitkan ANSI/TIA-942,Telecommunications Infrastructure Standard for Data Centers, yang menetapkan empat tingkat pusat data secara menyeluruh dan terukur. TIA-942 diubah pada tahun 2008, 2010, 2014 dan 2017. ''TIA-942:Data Center Standards Overview'' menjelaskan persyaratan untuk infrastruktur data center. Yang paling sederhana adalah pusat data Level 1, yang pada dasarnya adalah [[ruang server]], mengikuti panduan dasar untuk pemasangan sistem komputer. Level yang paling ketat adalah pusat data Level 4, yang dirancang untuk menampung sistem komputer yang paling kritis, dengan subsistem yang sepenuhnya redundan, kemampuan untuk terus beroperasi selama periode waktu yang tidak terbatas selama pemadaman listrik utama.
  
The [[Uptime Institute]], a data center research and professional-services organization based in Seattle, WA defined what is commonly referred to today as "Tiers" or more accurately, the "Tier Standard". Uptime's Tier Standard levels describe the availability of data processing from the hardware at a location. The higher the Tier level, the greater the expected availability. The Uptime Institute Tier Standards are shown below.
+
[[Uptime Institute]], sebuah penelitian data center dan organisasi layanan profesional yang berbasis di Seattle, WA mendefinisikan apa yang sekarang disebut sebagai "Tiers" atau lebih tepatnya, "Tier Standard". Level Standar Tingkat Uptime menjelaskan ketersediaan pemrosesan data dari perangkat keras di suatu lokasi. Semakin tinggi level Tier, semakin besar ketersediaan yang diharapkan. Standar Tingkat Uptime Institute ditunjukkan di bawah ini.
  
For the 2014 TIA-942 revision, the TIA organization and Uptime Institute mutually agreed{{citation needed|date=July 2017}} that TIA would remove any use of the word "Tier" from their published TIA-942 specifications, reserving that terminology to be solely used by Uptime Institute to describe its system.
+
Untuk revisi TIA-942 2014, organisasi TIA dan Uptime Institute sepakat bahwa TIA akan menghapus semua penggunaan kata "Tier" dari spesifikasi TIA-942 mereka yang dipublikasikan, dengan menggunakan terminologi tersebut hanya akan digunakan oleh Uptime Institute untuk mendeskripsikan sistemnya.
  
Other classifications exist as well. For instance, the German Datacenter Star Audit program uses an auditing process to certify five levels of "gratification" that affect data center criticality.
+
Klasifikasi lain juga ada. Misalnya, German Datacenter Star Audit program menggunakan proses audit untuk mengesahkan lima tingkat "gratification" yang memengaruhi data center yang critical.
  
 
{| class="wikitable"
 
{| class="wikitable"
|+ Uptime Institute's Tier Standards
+
|+ Uptime Institute Tier Standard
 
|-
 
|-
 
! Tier level
 
! Tier level
! Requirements
+
! Persyaratan
 
|-
 
|-
 
! I
 
! I
 
|
 
|
* Single non-redundant distribution path serving the critical loads
+
* Jalur distribusi non-redundan tunggal yang melayani beban kritis
* Non-redundant critical capacity components
+
* Komponen kritis non-redundan
 
|-
 
|-
 
! II
 
! II
 
|
 
|
* Meets all Tier I requirements, in addition to:
+
* Memenuhi semua persyaratan Tier I, selain:
* Redundant critical capacity components
+
* Komponen kritis yang redundan
* Critical capacity components must be able to be isolated and removed from service while still providing N capacity to the critical loads.
+
* Komponen kritis harus dapat diisolasi dan dipindahkan dari layanan sambil tetap memberikan kapasitas N ke beban kritis.
 
|-
 
|-
 
! III
 
! III
 
|
 
|
* Meets all Tier II requirements in addition to:
+
* Memenuhi semua persyaratan Tier II selain:
* Multiple independent distinct distribution paths serving the IT equipment critical loads
+
* Beberapa jalur distribusi independen yang berbeda melayani beban kritis peralatan TI
* All IT equipment must be dual-powered provided with two redundant, distinct UPS feeders. Single-corded IT devices must use a Point of Use Transfer Switch to allow the device to receive power from and select between the two UPS feeders.
+
* Semua peralatan TI harus dual-powered yang dilengkapi dengan dua sumber PLN & UPS redundan yang berbeda. Perangkat IT berkabel tunggal harus menggunakan Sakelar Transfer Titik Penggunaan agar perangkat dapat menerima daya dari dan memilih di antara dua pemasok UPS.
* Each and every critical capacity component, distribution path and component of any critical system must be able to be fully compatible with the topology of a site's architecture isolated for planned events (replacement, maintenance, or upgrade) while still providing N capacity to the critical loads.
+
* Setiap komponen kapasitas kritis, jalur distribusi, dan komponen sistem kritis apa pun harus dapat sepenuhnya kompatibel dengan topologi arsitektur situs yang diisolasi untuk acara yang direncanakan (penggantian, pemeliharaan, atau peningkatan) sambil tetap menyediakan kapasitas N ke kritis beban.
* Onsite energy production systems (such as engine generator systems) must not have runtime limitations at the site conditions and design load.
+
* Sistem produksi energi di lokasi (seperti generator listrik) tidak boleh memiliki batasan waktu kerja pada kondisi lokasi dan beban desain.
 
|-
 
|-
 
! IV
 
! IV
 
|
 
|
* Meets all Tier III requirements in addition to:
+
* Memenuhi semua persyaratan Tier III selain:
* Multiple independent distinct and active distribution paths serving the critical loads
+
* Beberapa jalur distribusi independen yang berbeda dan aktif melayani beban kritis
* Compartmentalization of critical capacity components and distribution paths
+
* Kompartemenisasi komponen kapasitas kritis dan jalur distribusi
* Critical systems must be able to autonomously provide N capacity to the critical loads after any single fault or failure
+
* Sistem kritis harus dapat secara mandiri menyediakan kapasitas N ke beban kritis setelah kesalahan atau kegagalan tunggal
* Continuous Cooling is required for IT and UPS systems.
+
* Pendinginan yang continuous diberikan untuk sistem IT dan UPS.
 
|}
 
|}
  
While any of the industry's data center resiliency systems were proposed at a time when availability was expressed as a theory, and a certain number of 'Nines' on the right side of the decimal point, it has generally been agreed that this approach was somewhat deceptive or too simplistic, so vendors today usually discuss availability in details that they can actually affect, and in much more specific terms. Hence, the leveling systems available today no longer define their results in percentages of uptime.
+
Sementara salah satu sistem ketahanan data center industri diusulkan pada saat ketersediaan dinyatakan sebagai teori, dan sejumlah 'Nine' (angka sembilan) di sisi kanan titik desimal, secara umum disepakati bahwa pendekatan ini agak menipu. atau terlalu sederhana, sehingga vendor saat ini biasanya membahas ketersediaan secara mendetail yang sebenarnya dapat mereka pengaruhi, dan dalam istilah yang jauh lebih spesifik. Oleh karena itu, sistem leveling yang tersedia saat ini tidak lagi menentukan hasilnya dalam persentase waktu aktif.
  
Note: The Uptime Institute also classifies the Tiers for each of the three phases of a data center, its design documents, the constructed facility and its ongoing operational sustainability.
+
Catatan: Uptime Institute juga mengklasifikasikan Tingkatan untuk masing-masing dari tiga fase pusat data, dokumen desainnya, fasilitas yang dibangun, dan keberlanjutan operasionalnya yang berkelanjutan.
  
==Design considerations==
+
==Pertimbangan desain==
  
A data center can occupy one room of a building, one or more floors, or an entire building. Most of the equipment is often in the form of servers mounted in [[19 inch rack]] cabinets, which are usually placed in single rows forming corridors (so-called aisles) between them. This allows people access to the front and rear of each cabinet. Servers differ greatly in size from [[Rack unit|1U servers]] to large freestanding storage silos which occupy many square feet of floor space. Some equipment such as [[mainframe computer]]s and [[computer storage|storage]] devices are often as big as the racks themselves, and are placed alongside them. Very large data centers may use [[intermodal container|shipping containers]] packed with 1,000 or more servers each; when repairs or upgrades are needed, whole containers are replaced (rather than repairing individual servers).
+
Data center dapat menempati satu ruangan di gedung, satu lantai atau lebih, atau seluruh gedung. Sebagian besar peralatan seringkali berupa server yang dipasang di lemari [[rak 19 inci]], yang biasanya ditempatkan dalam satu baris membentuk koridor (disebut lorong) di antaranya. Ini memungkinkan orang mengakses bagian depan dan belakang setiap kabinet. Ukuran server sangat berbeda dari [[Unit rak|server 1U]] hingga silo penyimpanan besar yang berdiri bebas yang menempati banyak ruang lantai. Beberapa peralatan seperti perangkat [[komputer mainframe]] dan [[penyimpanan komputer|penyimpanan]] seringkali sebesar rak itu sendiri, dan ditempatkan di sampingnya. Pusat data yang sangat besar dapat menggunakan [[intermodal container|shipping containers]] yang masing-masing dikemas dengan 1.000 server atau lebih; ketika perbaikan atau pemutakhiran diperlukan, seluruh wadah diganti (alih-alih memperbaiki server individual).
  
Local building codes may govern the minimum ceiling heights.
+
Kode bangunan lokal dapat mengatur ketinggian langit-langit minimum.
  
 
===Design programming===
 
===Design programming===
Design programming, also known as architectural programming, is the process of researching and making decisions to identify the scope of a design project. Other than the architecture of the building itself there are three elements to design programming for data centers: facility topology design (space planning), engineering infrastructure design (mechanical systems such as cooling and electrical systems including power) and technology infrastructure design (cable plant). Each will be influenced by performance assessments and modelling to identify gaps pertaining to the owner's performance wishes of the facility over time.
+
Design programming, juga dikenal sebagai architectural programming, adalah proses penelitian dan pengambilan keputusan untuk mengidentifikasi ruang lingkup proyek desain. Selain arsitektur bangunan itu sendiri, ada tiga elemen untuk mendesain pemrograman untuk data center: facility topology design (space planning), engineering infrastructure design (sistem mekanis seperti pendinginan dan sistem kelistrikan termasuk daya) dan technology infrastructure design (cable plant). Masing-masing akan dipengaruhi oleh penilaian kinerja dan pemodelan untuk mengidentifikasi kesenjangan yang berkaitan dengan keinginan kinerja pemilik fasilitas dari waktu ke waktu.
  
Various vendors who provide data center design services define the steps of data center design slightly differently, but all address the same basic aspects as given below.
+
Berbagai vendor yang menyediakan data center design service mendefinisikan langkah-langkah data center design sedikit berbeda, namun semuanya menangani aspek dasar yang sama seperti yang diberikan di bawah ini.
  
===Modeling criteria===
+
===Kriteria pemodelan===
Modeling criteria are used to develop future scenarios for space, power, cooling, and costs in the data center. The aim is to create a master plan with parameters such as number, size, location, topology, IT floor system layouts, and power and cooling technology and configurations. The purpose of this is to allow for efficient use of the existing mechanical and electrical systems and also growth in the existing data center without the need for developing new buildings and further upgrading of incoming power supply.
+
Kriteria pemodelan digunakan untuk mengembangkan skenario masa depan untuk ruang, daya, pendinginan, dan biaya di data center. Tujuannya adalah untuk membuat rencana induk dengan parameter seperti jumlah, ukuran, lokasi, topologi, tata letak sistem lantai TI, serta teknologi dan konfigurasi daya dan pendinginan. Tujuan dari ini adalah untuk memungkinkan penggunaan yang efisien dari sistem mekanik dan listrik yang ada dan juga pertumbuhan di pusat data yang ada tanpa perlu membangun gedung baru dan lebih meningkatkan pasokan listrik yang masuk.
  
===Design recommendations===
+
===Rekomendasi desain===
Design recommendations/plans generally follow the modelling criteria phase. The optimal technology infrastructure is identified and planning criteria are developed, such as critical power capacities, overall data center power requirements using an agreed upon PUE (power utilization efficiency), mechanical cooling capacities, kilowatts per cabinet, raised floor space, and the resiliency level for the facility.
+
Rekomendasi/rencana desain umumnya mengikuti fase kriteria pemodelan. Infrastruktur teknologi optimal diidentifikasi dan kriteria perencanaan dikembangkan, seperti kapasitas daya kritis, kebutuhan daya data center keseluruhan menggunakan PUE (power utilization efficiency) yang disepakati, kapasitas pendinginan mekanis, kilowatt per kabinet, raised floor space, dan tingkat ketahanan untuk fasilitas.
  
===Conceptual design===
+
===Desain konseptual===
Conceptual designs embody the design recommendations or plans and should take into account "what-if" scenarios to ensure all operational outcomes are met in order to future-proof the facility. Conceptual floor layouts should be driven by IT performance requirements as well as lifecycle costs associated with IT demand, energy efficiency, cost efficiency and availability. Future-proofing will also include expansion capabilities, often provided in modern data centers through modular designs. These allow for more raised floor space to be fitted out in the data center while using the existing major electrical plant of the facility.
+
Desain konseptual mewujudkan rekomendasi atau rencana desain dan harus mempertimbangkan skenario "what-if" untuk memastikan semua hasil operasional terpenuhi untuk membuktikan fasilitas di masa depan. Tata letak lantai konseptual harus didorong oleh persyaratan kinerja TI serta biaya siklus hidup yang terkait dengan permintaan TI, efisiensi energi, efisiensi biaya, dan ketersediaan. Pemeriksaan masa depan juga akan mencakup kemampuan ekspansi, yang seringkali disediakan di pusat data modern melalui desain modular. Ini memungkinkan ruang lantai yang lebih tinggi untuk dipasang di data center saat menggunakan pembangkit listrik utama yang ada di fasilitas tersebut.
  
 
===Detailed design===
 
===Detailed design===
Detailed design is undertaken once the appropriate conceptual design is determined, typically including a proof of concept. The detailed design phase should include the detailed architectural, structural, mechanical and electrical information and specification of the facility. At this stage development of facility schematics and construction documents as well as schematics and performance specification and specific detailing of all technology infrastructure, detailed [[IT infrastructure]] design and IT infrastructure documentation are produced.
+
Detailed designdilakukan setelah desain konseptual yang sesuai ditentukan, biasanya termasuk pembuktian konsep. Fase detailed design harus mencakup informasi arsitektur, struktural, mekanik dan listrik rinci dan spesifikasi fasilitas. Pada tahap ini pengembangan skema fasilitas dan dokumen konstruksi serta skema dan spesifikasi kinerja dan perincian khusus dari semua infrastruktur teknologi, desain [[infrastruktur TI]] terperinci dan dokumentasi infrastruktur TI diproduksi.
  
===Mechanical engineering infrastructure designs===
+
===Mechanical engineering infrastructure design===
  
Mechanical engineering infrastructure design addresses mechanical systems involved in maintaining the interior environment of a data center, such as heating, ventilation and air conditioning (HVAC); humidification and dehumidification equipment; pressurization; and so on.
+
Mechanical engineering infrastructure design membahas sistem mekanis yang terlibat dalam memelihara lingkungan interior data center, seperti pemanas, ventilasi, dan air conditioning (HVAC); peralatan pelembapan dan dehumidifikasi; tekanan udara; dan seterusnya.
  
This stage of the design process should be aimed at saving space and costs, while ensuring business and reliability objectives are met as well as achieving PUE and green requirements. Modern designs include modularizing and scaling IT loads, and making sure capital spending on the building construction is optimized.
+
Tahap proses desain ini harus ditujukan untuk menghemat ruang dan biaya, sambil memastikan tujuan bisnis dan keandalan terpenuhi serta mencapai persyaratan PUE dan ramah lingkungan. Desain modern mencakup modularisasi dan penskalaan beban TI, dan memastikan belanja modal untuk konstruksi bangunan dioptimalkan.
  
 
===Electrical engineering infrastructure design===
 
===Electrical engineering infrastructure design===
Electrical Engineering infrastructure design is focused on designing electrical configurations that accommodate various reliability requirements and data center sizes. Aspects may include utility service planning; distribution, switching and bypass from power sources; uninterruptible power source (UPS) systems; and more.
+
Electrical Engineering infrastructure design difokuskan pada perancangan konfigurasi kelistrikan yang mengakomodir berbagai kebutuhan keandalan dan ukuran data center. Aspek dapat mencakup perencanaan layanan utilitas; distribusi, switching dan bypass dari sumber daya; sistem uninterruptible power source (UPS); dan banyak lagi.
  
These designs should dovetail to energy standards and best practices while also meeting business objectives. Electrical configurations should be optimized and operationally compatible with the data center user's capabilities. Modern electrical design is modular and scalable, and is available for low and medium voltage requirements as well as DC (direct current).
+
Desain ini harus sesuai dengan standar energi dan praktik terbaik sekaligus memenuhi tujuan bisnis. Konfigurasi kelistrikan harus dioptimalkan dan kompatibel secara operasional dengan kemampuan pengguna data center. Desain kelistrikan modern bersifat modular dan terukur, dan tersedia untuk kebutuhan tegangan rendah dan menengah serta DC (arus searah).
  
 
===Technology infrastructure design===
 
===Technology infrastructure design===
 +
Technology infrastructure design membahas sistem kabel telekomunikasi yang berjalan di seluruh data center. Terdapat sistem pengkabelan untuk semua lingkungan data center, termasuk pengkabelan horizontal, suara, modem, dan layanan telekomunikasi faksimili, peralatan peralihan lokasi, koneksi manajemen komputer dan telekomunikasi, koneksi keyboard/video/mouse, dan komunikasi data. Wide Area Network, Local Area Network, dan storage area network harus terhubung dengan sistem pensinyalan gedung lainnya (misalnya kebakaran, keamanan, listrik, HVAC, EMS).
  
Technology infrastructure design addresses the telecommunications cabling systems that run throughout data centers. There are cabling systems for all data center environments, including horizontal cabling, voice, modem, and facsimile telecommunications services, premises switching equipment, computer and telecommunications management connections, keyboard/video/mouse connections and data communications. Wide area, local area, and storage area networks should link with other building signaling systems (e.g. fire, security, power, HVAC, EMS).
+
===Ekspektasi Ketersediaan===
 +
Semakin tinggi kebutuhan ketersediaan data center, semakin tinggi modal dan biaya operasional untuk membangun dan mengelolanya. Kebutuhan bisnis harus mendikte tingkat ketersediaan yang dibutuhkan dan harus dievaluasi berdasarkan karakterisasi kekritisan sistem TI, perkiraan analisis biaya dari skenario yang dimodelkan. Dengan kata lain, bagaimana tingkat ketersediaan yang tepat dapat dipenuhi dengan kriteria desain untuk menghindari risiko keuangan dan operasional sebagai akibat dari downtime?
  
===Availability expectations===
+
Jika perkiraan biaya downtime dalam satuan waktu tertentu melebihi biaya modal yang diamortisasi dan biaya operasional, tingkat ketersediaan yang lebih tinggi harus diperhitungkan dalam desain data center. Jika biaya untuk menghindari waktu henti jauh melebihi biaya waktu henti itu sendiri, tingkat ketersediaan yang lebih rendah harus diperhitungkan dalam desain.
The higher the availability needs of a data center, the higher the capital and operational costs of building and managing it. Business needs should dictate the level of availability required and should be evaluated based on characterization of the criticality of IT systems estimated cost analyses from modeled scenarios. In other words, how can an appropriate level of availability best be met by design criteria to avoid financial and operational risks as a result of downtime?
 
If the estimated cost of downtime within a specified time unit exceeds the amortized capital costs and operational expenses, a higher level of availability should be factored into the data center design. If the cost of avoiding downtime greatly exceeds the cost of downtime itself, a lower level of availability should be factored into the design.
 
  
===Site selection===
+
===Pemilihan Lokasi===
Aspects such as proximity to available power grids, telecommunications infrastructure, networking services, transportation lines and emergency services can affect costs, risk, security and other factors to be taken into consideration for data center design.   Whilst a wide array of location factors are taken into account (e.g. flight paths, neighbouring uses, geological risks) access to suitable available power is often the longest lead time item. Location affects data center design also because the climatic conditions dictate what cooling technologies should be deployed. In turn this impacts uptime and the costs associated with cooling. For example, the topology and the cost of managing a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate.
+
Aspek-aspek seperti kedekatan dengan jaringan listrik yang tersedia, infrastruktur telekomunikasi, layanan jaringan, jalur transportasi, dan layanan darurat dapat memengaruhi biaya, risiko, keamanan, dan faktor lain yang harus dipertimbangkan untuk desain data center. Sementara beragam faktor lokasi diperhitungkan (misalnya jalur penerbangan, penggunaan di sekitar, risiko geologis), akses ke daya yang tersedia yang sesuai sering kali merupakan waktu tunggu yang paling lama. Lokasi memengaruhi desain data center juga karena kondisi iklim menentukan teknologi pendinginan apa yang harus diterapkan. Pada gilirannya hal ini berdampak pada waktu kerja dan biaya yang terkait dengan pendinginan. Misalnya, topologi dan biaya pengelolaan data center di iklim yang hangat dan lembab akan sangat berbeda dengan pengelolaan di iklim yang sejuk dan kering.
  
===Modularity and flexibility===
+
===Modularitas dan fleksibilitas===
 +
Modularitas dan fleksibilitas adalah elemen kunci yang memungkinkan data center tumbuh dan berubah seiring waktu. Modul data center adalah blok bangunan terstandarisasi yang direkayasa sebelumnya yang dapat dengan mudah dikonfigurasi dan dipindahkan sesuai kebutuhan.
  
 +
Data center modular dapat terdiri dari peralatan data center yang terdapat di dalam kontainer pengiriman atau kontainer portabel serupa. Tetapi juga dapat digambarkan sebagai gaya desain di mana komponen data center dibuat sebelumnya dan distandarisasi sehingga dapat dibangun, dipindahkan, atau ditambahkan secepat perubahan kebutuhan.
  
Modularity and flexibility are key elements in allowing for a data center to grow and change over time. Data center modules are pre-engineered, standardized building blocks that can be easily configured and moved as needed.
+
===Environmental control===
  
A modular data center may consist of data center equipment contained within shipping containers or similar portable containers.But it can also be described as a design style in which components of the data center are prefabricated and standardized so that they can be constructed, moved or added to quickly as needs change.
+
Physical environment data center dikontrol dengan ketat.
  
===Environmental control===
+
[[Air conditioning]] digunakan untuk mengontrol suhu dan kelembaban di pusat data. "Thermal Guidelines for Data Processing Environments" [[ASHRAE]] merekomendasikan kisaran suhu 18-27C, kisaran titik embun -9 s/d 15C, dan kelembapan relatif ideal 60%, dengan kisaran yang diperbolehkan antara 40% hingga 60% untuk lingkungan data center. Suhu di v secara alami akan naik karena daya listrik yang digunakan untuk memanaskan udara. Kecuali jika panas dihilangkan, suhu sekitar akan naik, yang mengakibatkan kegagalan fungsi peralatan elektronik. Dengan mengontrol suhu udara, komponen server di motherboard dalam rentang suhu/kelembaban yang ditentukan pabrikan. Sistem pendingin udara membantu mengontrol [[kelembaban]] dengan mendinginkan udara ruang balik di bawah [[titik embun]]. Terlalu banyak kelembapan, dan air mungkin mulai [[kondensasi|mengembun]] pada komponen internal. Dalam kasus atmosfer kering, sistem pelembapan tambahan dapat menambahkan uap air jika kelembapan terlalu rendah, yang dapat menyebabkan masalah pelepasan muatan [[elektrostatis|listrik statis]] yang dapat merusak komponen. Data center bawah tanah dapat menjaga peralatan komputer tetap dingin sambil mengeluarkan lebih sedikit energi daripada desain konvensional.
  
The physical environment of a data center is rigorously controlled.
+
Data center modern mencoba menggunakan pendingin economizer, di mana mereka menggunakan udara luar agar data center tetap dingin. Setidaknya satu data center (terletak di [[Upstate New York]]) akan mendinginkan server menggunakan udara luar selama musim dingin. Mereka tidak menggunakan pendingin/AC, yang menciptakan potensi penghematan energi hingga jutaan. Pendinginan udara tidak langsung semakin banyak digunakan di pusat data secara global yang memiliki keunggulan pendinginan yang lebih efisien yang menurunkan biaya konsumsi daya di pusat data. Banyak data center yang baru dibangun juga menggunakan unit Indirect Evaporative Cooling (IDEC) serta fitur lingkungan lainnya seperti air laut untuk meminimalkan jumlah energi yang dibutuhkan untuk mendinginkan ruangan.
[[Air conditioning]] is used to control the temperature and humidity in the data center. [[ASHRAE]]'s "Thermal Guidelines for Data Processing Environments" recommends a temperature range of {{convert|18|–|27|C|F}}, a dew point range of {{convert|-9| to|15|C|F}}, and ideal relative humidity of 60%, with an allowable range of 40% to 60% for data center environments. The temperature in a data center will naturally rise because the electrical power used heats the air. Unless the heat is removed, the ambient temperature will rise, resulting in electronic equipment malfunction. By controlling the air temperature, the server components at the board level are kept within the manufacturer's specified temperature/humidity range. Air conditioning systems help control [[humidity]] by cooling the return space air below the [[dew point]]. Too much humidity, and water may begin to [[condensation|condense]] on internal components. In case of a dry atmosphere, ancillary humidification systems may add water vapor if the humidity is too low, which can result in [[electrostatics|static electricity]] discharge problems which may damage components. Subterranean data centers may keep computer equipment cool while expending less energy than conventional designs.
 
  
Modern data centers try to use economizer cooling, where they use outside air to keep the data center cool. At least one data center (located in [[Upstate New York]]) will cool servers using outside air during the winter. They do not use chillers/air conditioners, which creates potential energy savings in the millions.  Increasingly indirect air cooling is being deployed in data centers globally which has the advantage of more efficient cooling which lowers power consumption costs in the data center. Many newly constructed data centers are also using Indirect Evaporative Cooling (IDEC) units as well as other environmental features such as sea water to minimize the amount of energy needed to cool the space.
+
Telcordia ''NEBS: Raised Floor Generic Requirements for Network and Data Centers'', GR-2930 menyajikan persyaratan teknik umum untuk lantai yang dinaikkan yang termasuk dalam pedoman NEBS yang ketat.
  
Telcordia ''NEBS: Raised Floor Generic Requirements for Network and Data Centers'', GR-2930 presents generic engineering requirements for raised floors that fall within the strict NEBS guidelines.
+
Ada banyak jenis lantai yang tersedia secara komersial yang menawarkan berbagai kekuatan struktural dan kemampuan pemuatan, tergantung pada konstruksi komponen dan bahan yang digunakan. Jenis umum [[raised floor]] termasuk platform stringer, stringerless, dan struktural, yang semuanya dibahas secara rinci di GR-2930 dan dirangkum di bawah ini.
  
There are many types of commercially available floors that offer a wide range of structural strength and loading capabilities, depending on component construction and the materials used. The general types of [[raised floor]]s include stringer, stringerless,  and structural platforms, all of which are discussed in detail in GR-2930 and summarized below.
+
* '''''Stringered raised floor''''' - Jenis lantai ditinggikan ini umumnya terdiri dari susunan vertikal rakitan alas baja (setiap rakitan terdiri dari pelat dasar baja, tubular tegak, dan kepala) secara seragam ditempatkan pada pusat dua kaki dan secara mekanis diikat ke lantai beton. Kepala tumpuan baja memiliki tiang yang dimasukkan ke dalam tumpuan tegak dan ketinggian keseluruhan dapat disesuaikan dengan mur perata pada tiang yang dilas pada kepala tumpuan.
* '''''Stringered raised floors''''' - This type of raised floor generally consists of a vertical array of steel pedestal assemblies (each assembly is made up of a steel base plate, tubular upright, and a head) uniformly spaced on two-foot centers and mechanically fastened to the concrete floor. The steel pedestal head has a stud that is inserted into the pedestal upright and the overall height is adjustable with a leveling nut on the welded stud of the pedestal head.
+
* '''''Stringerless raised floor''''' - Salah satu jenis lantai peninggian non-gempa umumnya terdiri dari susunan tumpuan yang memberikan ketinggian yang diperlukan untuk merutekan kabel dan juga berfungsi untuk menopang setiap sudut panel lantai. Dengan jenis lantai ini, mungkin ada atau tidak ada perlengkapan untuk mengencangkan panel lantai secara mekanis ke tumpuan. Jenis sistem tanpa senar ini (tidak memiliki keterikatan mekanis antara kepala tumpuan) memberikan aksesibilitas maksimum ke ruang di bawah lantai. Namun, lantai tanpa senar secara signifikan lebih lemah daripada lantai yang ditinggikan dengan senar dalam mendukung beban lateral dan tidak direkomendasikan.
* '''''Stringerless raised floors''''' - One non-earthquake type of raised floor generally consists of an array of pedestals that provide the necessary height for routing cables and also serve to support each corner of the floor panels. With this type of floor, there may or may not be provisioning to mechanically fasten the floor panels to the pedestals. This stringerless type of system (having no mechanical attachments between the pedestal heads) provides maximum accessibility to the space under the floor. However, stringerless floors are significantly weaker than stringered raised floors in supporting lateral loads and are not recommended.
+
* '''''Structural platform''''' - Salah satu jenis platform struktural terdiri dari anggota yang dibangun dari sudut baja atau saluran yang dilas atau dibaut bersama untuk membentuk platform terintegrasi untuk peralatan pendukung. Desain ini memungkinkan peralatan untuk diikat langsung ke platform tanpa perlu toggle bar atau penguat tambahan. Platform struktural mungkin atau mungkin tidak berisi panel atau stringer.
* '''''Structural platforms''''' - One type of structural platform consists of members constructed of steel angles or channels that are welded or bolted together to form an integrated platform for supporting equipment. This design permits equipment to be fastened directly to the platform without the need for toggle bars or supplemental bracing. Structural platforms may or may not contain panels or stringers.
 
  
Data centers typically have [[raised floor]]ing made up of {{convert|60|cm|ft|abbr=on|0}} removable square tiles. The trend is towards {{convert|80|-|100|cm|in|abbr=on}} void to cater for better and uniform air distribution. These provide a [[plenum space|plenum]] for air to circulate below the floor, as part of the air conditioning system, as well as providing space for power cabling.
+
Data Center biasanya memiliki [[raised floor]] yang terdiri dari 60 cm ubin persegi yang dapat dilepas. Tren menuju 80-100 cm void untuk memenuhi distribusi udara yang lebih baik dan seragam. Ini menyediakan [[ruang pleno|pleno]] untuk sirkulasi udara di bawah lantai, sebagai bagian dari sistem pendingin udara, serta menyediakan ruang untuk pemasangan kabel daya.
  
====Metal whiskers====
+
===Kumis logam===
Raised floors and other metal structures such as cable trays and ventilation ducts have caused many problems with [[zinc whiskers]] in the past, and likely are still present in many data centers. This happens when microscopic metallic filaments form on metals such as zinc or tin that protect many metal structures and electronic components from corrosion. Maintenance on a raised floor or installing of cable etc. can dislodge the whiskers, which enter the airflow and may short circuit server components or power supplies, sometimes through a high current metal vapor [[plasma arc]]. This phenomenon is not unique to data centers, and has also caused catastrophic failures of satellites and military hardware.
+
Raised Floor dan struktur logam lainnya seperti cable tray dan ventilation duct telah menyebabkan banyak masalah dengan [[kumis seng]] di masa lalu, dan sepertinya masih ada di banyak data center. Ini terjadi ketika filamen logam mikroskopis terbentuk pada logam seperti seng atau timah yang melindungi banyak struktur logam dan komponen elektronik dari korosi. Perawatan di lantai yang ditinggikan atau pemasangan kabel dll. dapat melepaskan kumis, yang masuk ke aliran udara dan dapat menyebabkan korsleting komponen server atau catu daya, terkadang melalui uap logam berarus tinggi [[busur plasma]]. Fenomena ini tidak unik untuk data center, dan juga menyebabkan kegagalan besar pada satelit dan perangkat keras militer.
  
 
===Electrical power===
 
===Electrical power===
 +
Backup power terdiri dari satu atau lebih [[uninterruptible power supply]], batere, dan/atau generator [[Generator diesel|solar]] / [[turbin gas]].
  
 
+
Untuk mencegah [[single point of failure]], semua elemen sistem kelistrikan, termasuk sistem cadangan, biasanya digandakan sepenuhnya, dan server penting dihubungkan ke "A-side" dan "B-side" umpan listrik. Pengaturan ini sering dibuat untuk mencapai [[N+1 redundansi]] dalam sistem. [[Sakelar transfer statis]] terkadang digunakan untuk memastikan peralihan seketika dari satu suplai ke suplai lainnya jika terjadi kegagalan listrik.
Backup power consists of one or more [[uninterruptible power supply|uninterruptible power supplies]], battery banks, and/or [[Diesel generator|diesel]] / [[gas turbine]] generators.
 
 
 
To prevent [[single point of failure|single points of failure]], all elements of the electrical systems, including backup systems, are typically fully duplicated, and critical servers are connected to both the "A-side" and "B-side" power feeds. This arrangement is often made to achieve [[N+1 redundancy]] in the systems. [[Transfer switch#Static transfer switch|Static transfer switches]] are sometimes used to ensure instantaneous switchover from one supply to the other in the event of a power failure.
 
  
 
===Low-voltage cable routing===
 
===Low-voltage cable routing===
Data cabling is typically routed through overhead [[cable tray]]s in modern data centers. But some{{Who|date=May 2012}} are still recommending under raised floor cabling for security reasons and to consider the addition of cooling systems above the racks in case this enhancement is necessary. Smaller/less expensive data centers without raised flooring may use anti-static tiles for a flooring surface. Computer cabinets are often organized into a [[Data center environmental control#Aisle containment|hot aisle]] arrangement to maximize airflow efficiency.
+
Pengkabelan data biasanya dirutekan melalui overhead [[cable tray]] di data center modern. Namun beberapa orang masih merekomendasikan pemasangan kabel di bawah lantai untuk alasan keamanan dan untuk mempertimbangkan penambahan sistem pendingin di atas rak jika peningkatan ini diperlukan. Data Center yang lebih kecil/lebih murah tanpa lantai yang ditinggikan dapat menggunakan ubin antistatis untuk permukaan lantai. Lemari komputer sering diatur menjadi pengaturan [[hot aisle]] untuk memaksimalkan efisiensi aliran udara.
 
 
===Fire protection===
 
 
 
Data centers feature [[fire protection]] systems, including [[passive fire protection|passive]] and [[Active Design]] elements, as well as implementation of [[fire prevention]] programs in operations. [[Smoke detectors]] are usually installed to provide early warning of a fire at its incipient stage. This allows investigation, interruption of power, and manual fire suppression using hand held fire extinguishers before the fire grows to a large size. An [[active fire protection]] system, such as a [[fire sprinkler system]] or a [[clean agent]] fire suppression gaseous system, is often provided to control a full scale fire if it develops. High sensitivity smoke detectors, such as [[aspirating smoke detector]]s, activating [[clean agent]] fire suppression gaseous systems activate earlier than fire sprinklers.
 
 
 
* Sprinklers = structure protection and building life safety.
 
* Clean agents = business continuity and asset protection.
 
* No water = no collateral damage or clean up.
 
 
 
Passive fire protection elements include the installation of [[Firewall (construction)|fire walls]] around the data center, so a fire can be restricted to a portion of the facility for a limited time in the event of the failure of the active fire protection systems. Fire wall penetrations into the server room, such as cable penetrations, coolant line penetrations and air ducts, must be provided with fire rated penetration assemblies, such as [[fire stop]]ping.
 
 
 
===Security===
 
 
 
Physical security also plays a large role with data centers. Physical access to the site is usually restricted to selected personnel, with controls including a layered security system often starting with fencing, [[bollard]]s and [[mantrap (access control)|mantraps]]. [[Video camera]] surveillance and permanent [[security guard]]s are almost always present if the data center is large or contains sensitive information on any of the systems within. The use of finger print recognition [[mantrap (snare)|mantraps]] is starting to be commonplace.  
 
  
Documenting access is required by some data protection regulations. To do so, some organizations use access control systems that provide a logging report of accesses. Logging can occur at the main entrance, at the entrances to mechanical rooms and white spaces, as well as in at the equipment cabinets. Modern access control at the cabinet allows for integration with intelligent [[power distribution units]] so that the locks can be powered and networked through the same appliance.
+
===Perlindungan kebakaran===
  
==Energy use==
+
Data Center mempunyai sistem [[proteksi kebakaran]], termasuk elemen [[proteksi kebakaran pasif|pasif]] dan [[Desain Aktif]], serta penerapan program [[pencegahan kebakaran]] dalam operasi. [[Detektor asap]] biasanya dipasang untuk memberikan peringatan dini akan adanya kebakaran pada tahap awal. Hal ini memungkinkan penyelidikan, pemutusan aliran listrik, dan pemadaman api manual menggunakan alat pemadam api genggam sebelum api membesar menjadi ukuran besar. Sistem [[proteksi kebakaran aktif]], seperti sistem gas pencegah kebakaran [[fire sprinkler system]] atau [[clean agent]], sering disediakan untuk mengendalikan api skala penuh jika berkembang. Detektor asap sensitivitas tinggi, seperti [[detektor asap aspirating]], mengaktifkan [[clean agent]] sistem gas pencegah kebakaran aktif lebih awal daripada penyiram api.
  
 +
* Sprinkler = perlindungan struktur dan keselamatan hidup bangunan.
 +
* Clean agent = kelangsungan bisnis dan perlindungan aset.
 +
* No water = tidak ada jaminan kerusakan atau pembersihan.
  
Energy use is a central issue for data centers. Power draw for data centers ranges from a few kW for a rack of servers in a closet to several tens of MW for large facilities. Some facilities have power densities more than 100 times that of a typical office building. For higher power density facilities, electricity costs are a dominant [[operating expense]] and account for over 10% of the [[total cost of ownership]] (TCO) of a data center. By 2012 the cost of power for the data center is expected to exceed the cost of the original capital investment.
+
Elemen proteksi kebakaran pasif mencakup pemasangan [[Firewall]] di sekitar data center, sehingga api dapat dibatasi ke sebagian fasilitas untuk waktu yang terbatas jika terjadi kegagalan kebakaran aktif sistem perlindungan. Penetrasi dinding api ke ruang server, seperti penetrasi kabel, penetrasi saluran cairan pendingin, dan saluran udara, harus dilengkapi dengan rakitan penetrasi tahan api, seperti [[fire stop]]ping.
  
According to a [[Greenpeace]] study, in 2012, data centers represented 21% of the electricity consumed by the IT sector, which was about 382 billion kWh a year. U.S. data centers use more than 90 billion kWh of electricity a year. Global data centers used roughly 416 TWh in 2016, nearly 40% more than the entire United Kingdom.
+
===Keamanan===
  
===Greenhouse gas emissions===
+
Keamanan fisik juga memainkan peran besar dengan data center. Akses fisik ke lokasi biasanya dibatasi untuk personel tertentu, dengan kontrol termasuk sistem keamanan berlapis yang sering dimulai dengan pagar, [[bollard]] dan [[mantrap (kontrol akses)]]. [[Kamera video]] pengawasan dan [[penjaga keamanan]] permanen hampir selalu ada pada data center besar atau berisi informasi sensitif pada salah satu sistem di dalamnya. Penggunaan finger print recognition [[mantrap (snare)]] mulai menjadi hal yang lumrah.
In 2007 the entire [[information and communication technologies]] or ICT sector was estimated to be responsible for roughly 2% of global [[Greenhouse gas|carbon emissions]] with data centers accounting for 14% of the ICT footprint. for 2007. Given a business as usual scenario greenhouse gas emissions from data centers is projected to more than double from 2007 levels by 2020.
 
  
Siting is one of the factors that affect the energy consumption and environmental effects of a datacenter. In areas where climate favors cooling and lots of renewable electricity is available the environmental effects will be more moderate. Thus countries with favorable conditions, such as: Canada, Finland, Sweden, Norway  and Switzerland, are trying to attract cloud computing data centers.
+
Mendokumentasikan akses diperlukan oleh beberapa peraturan perlindungan data. Untuk melakukannya, beberapa organisasi menggunakan sistem kontrol akses yang menyediakan laporan pencatatan akses. Pencataan dapat terjadi di pintu masuk utama, di pintu masuk ke ruang mekanik dan ruang putih, serta di lemari peralatan. Kontrol akses modern pada kabinet memungkinkan integrasi dengan [[unit distribusi daya]] yang cerdas sehingga kunci dapat diberi daya dan dihubungkan ke jaringan melalui alat yang sama.
  
In an 18-month investigation by scholars at Rice University's Baker Institute for Public Policy in Houston and the Institute for Sustainable and Applied Infodynamics in Singapore, data center-related emissions will more than triple by 2020.
+
==Penggunaan Energi==
 +
Penggunaan energi adalah isu sentral untuk data center. Penarikan daya untuk data center berkisar dari beberapa kW untuk rak server dalam lemari hingga beberapa puluh MW untuk fasilitas besar. Beberapa fasilitas memiliki kerapatan daya lebih dari 100 kali lipat dari gedung perkantoran pada umumnya. Untuk fasilitas dengan kepadatan daya yang lebih tinggi, biaya listrik merupakan [[biaya operasional]] yang dominan dan mencapai lebih dari 10% dari [[total cost of ownership]] (TCO) pusat data. Pada tahun 2012, biaya daya untuk data center diperkirakan melebihi biaya investasi modal awal.
  
===Energy efficiency===
+
Menurut studi [[Greenpeace]], pada tahun 2012, pusat data center mewakili 21% listrik yang dikonsumsi oleh sektor TI, yaitu sekitar 382 miliar kWh per tahun. Data Center AS menggunakan lebih dari 90 miliar kWh listrik per tahun. Data Center global menggunakan sekitar 416 TWh pada tahun 2016, hampir 40% lebih banyak daripada seluruh Inggris Raya.
The most commonly used metric to determine the energy efficiency of a data center is [[power usage effectiveness]], or PUE. This simple ratio is the total power entering the data center divided by the power used by the IT equipment.
 
  
:<math> \mathrm{PUE}  = {\mbox{Total Facility Power} \over \mbox{IT Equipment Power}} </math>
+
===Emisi gas rumah kaca===
 +
Pada tahun 2007, seluruh [[teknologi informasi dan komunikasi]] atau sektor TIK diperkirakan bertanggung jawab atas sekitar 2% dari [[Greenhouse gas|carbon emissions]] global dengan pusat data terhitung 14% dari jejak TIK. untuk tahun 2007. Mengingat skenario bisnis seperti biasa, emisi gas rumah kaca dari data center diproyeksikan menjadi lebih dari dua kali lipat dari tingkat tahun 2007 pada tahun 2020.
  
Total facility power consists of power used by IT equipment plus any overhead power consumed by anything that is not considered a computing or data communication device (i.e. cooling, lighting, etc.). An ideal PUE is 1.0 for the hypothetical situation of zero overhead power. The average data center in the US has a PUE of 2.0,<ref name="energystar1"/> meaning that the facility uses two watts of total power (overhead + IT equipment) for every watt delivered to IT equipment. State-of-the-art data center energy efficiency is estimated to be roughly 1.2. Some large data center operators like [[Microsoft]] and [[Yahoo!]] have published projections of PUE for facilities in development; [[Google]] publishes quarterly actual efficiency performance from data centers in operation.
+
Penempatan adalah salah satu faktor yang mempengaruhi konsumsi energi dan efek lingkungan dari data center. Di daerah di mana iklim mendukung pendinginan dan tersedia banyak listrik terbarukan, dampak lingkungan akan lebih moderat. Jadi negara-negara dengan kondisi yang menguntungkan, seperti: Kanada, Finlandia, Swedia, Norwegia, dan Swiss, mencoba menarik cloud computing data center.
  
The [[U.S. Environmental Protection Agency]] has an [[Energy Star]] rating for standalone or large data centers. To qualify for the ecolabel, a data center must be within the top quartile of energy efficiency of all reported facilities. The United States passed the Energy Efficiency Improvement Act of 2015, which requires federal facilities — including data centers — to operate more efficiently. In 2014, California enacted [[California Energy Code|title 24]] of the California Code of Regulations, which mandates that every newly constructed data center must have some form of airflow containment in place, as a measure to optimize energy efficiency.
+
Dalam penyelidikan selama 18 bulan oleh para sarjana di Baker Institute for Public Policy di Rice University di Houston dan Institute for Sustainable and Applied Infodynamics di Singapura, emisi terkait data center akan meningkat lebih dari tiga kali lipat pada tahun 2020.
  
European Union also has a similar initiative: EU Code of Conduct for Data Centres
+
===Efisiensi energi===
 +
Metrik yang paling umum digunakan untuk menentukan efisiensi energi data center adalah [[power usage effectiveness]], atau PUE. Rasio sederhana ini adalah total daya yang masuk ke pusat data dibagi dengan daya yang digunakan oleh peralatan TI.
  
===Energy use analysis===
+
PUE = Total Facility Power / IT Equipment Power
Often, the first step toward curbing energy use in a data center is to understand how energy is being used in the data center. Multiple types of analysis exist to measure data center energy use. Aspects measured include not just energy used by IT equipment itself, but also by the data center facility equipment, such as chillers and fans.
 
  
===Power and cooling analysis===
+
Total facility power terdiri dari daya yang digunakan oleh peralatan TI ditambah daya overhead yang dikonsumsi oleh apa pun yang tidak dianggap sebagai perangkat komputasi atau komunikasi data (yaitu pendinginan, penerangan, dll.). PUE yang ideal adalah 1.0 untuk situasi hipotetis dari daya overhead nol. Data Center rata-rata di AS memiliki PUE 2,0 yang berarti bahwa fasilitas menggunakan daya total dua watt (overhead + peralatan IT) untuk setiap watt yang dikirimkan ke peralatan IT. Efisiensi energi data center canggih diperkirakan sekitar 1,2. Beberapa operator data center besar seperti [[Microsoft]] dan [[Yahoo!]] telah menerbitkan proyeksi PUE untuk fasilitas yang sedang dikembangkan; [[Google]] memublikasikan kinerja efisiensi aktual triwulanan dari data center yang beroperasi.
Power is the largest recurring cost to the user of a data center. A power and cooling analysis, also referred to as a thermal assessment, measures the relative temperatures in specific areas as well as the capacity of the cooling systems to handle specific ambient temperatures. A power and cooling analysis can help to identify hot spots, over-cooled areas that can handle greater power use density, the breakpoint of equipment loading, the effectiveness of a raised-floor strategy, and optimal equipment positioning (such as AC units) to balance temperatures across the data center. Power cooling density is a measure of how much square footage the center can cool at maximum capacity. The cooling of data centers is the second largest power consumer after servers. The cooling energy varies from 10% of the total energy consumption in the most efficient data centers and goes up to 45% in standard air-cooled data centers.
 
  
===Energy efficiency analysis===
+
Amerika Serikat. Badan Perlindungan Lingkungan]] memiliki peringkat [[Energy Star]] untuk pusat data mandiri atau besar. Agar memenuhi syarat untuk ekolabel, pusat data harus berada dalam kuartil teratas efisiensi energi dari semua fasilitas yang dilaporkan. Amerika Serikat mengesahkan Undang-Undang Peningkatan Efisiensi Energi tahun 2015, yang mewajibkan fasilitas federal — termasuk data center — untuk beroperasi lebih efisien. Pada tahun 2014, California memberlakukan [[California Energy Code title 24]] dari Kode Peraturan California, yang mengamanatkan bahwa setiap data center yang baru dibangun harus memiliki beberapa bentuk penahanan aliran udara, sebagai langkah untuk mengoptimalkan efisiensi energi.
An energy efficiency analysis measures the energy use of data center IT and facilities equipment. A typical energy efficiency analysis measures factors such as a data center's power use effectiveness (PUE) against industry standards, identifies mechanical and electrical sources of inefficiency, and identifies air-management metrics. However, the limitation of most current metrics and approaches is that they do not include IT in the analysis. Case studies have shown that by addressing energy efficiency holistically in a data center, major efficiencies can be achieved that are not possible otherwise.
 
  
===Computational fluid dynamics (CFD) analysis===
+
Uni Eropa juga memiliki inisiatif serupa: EU Code of Conduct for Data Centres
  
 +
===Analisis penggunaan energi===
 +
Seringkali, langkah pertama untuk membatasi penggunaan energi di data center adalah dengan memahami bagaimana energi digunakan di data center. Ada beberapa jenis analisis untuk mengukur penggunaan energi data center. Aspek yang diukur tidak hanya mencakup energi yang digunakan oleh peralatan IT itu sendiri, tetapi juga oleh peralatan fasilitas data center, seperti pendingin dan kipas.
  
This type of analysis uses sophisticated tools and techniques to understand the unique thermal conditions present in each data center—predicting the temperature, airflow, and pressure behavior of a data center to assess performance and energy consumption, using numerical modeling. By predicting the effects of these environmental conditions, CFD analysis in the data center can be used to predict the impact of high-density racks mixed with low-density racks and the onward impact on cooling resources, poor infrastructure management practices and AC failure or AC shutdown for scheduled maintenance.
+
===Analisis daya dan pendinginan===
 +
Daya adalah biaya berulang terbesar bagi pengguna data center. Analisis daya dan pendinginan, juga disebut sebagai penilaian termal, mengukur suhu relatif di area tertentu serta kapasitas sistem pendingin untuk menangani suhu lingkungan tertentu. Analisis daya dan pendinginan dapat membantu mengidentifikasi hot spot, area yang terlalu dingin yang dapat menangani kerapatan penggunaan daya yang lebih besar, breakpoint pemuatan peralatan, efektivitas strategi lantai yang dinaikkan, dan pemosisian peralatan yang optimal (seperti unit AC) untuk menyeimbangkan suhu di data center. Kepadatan pendinginan daya adalah ukuran berapa banyak luas persegi yang dapat didinginkan pusat pada kapasitas maksimum. Pendinginan data center adalah konsumen daya terbesar kedua setelah server. Energi pendinginan bervariasi dari 10% dari total konsumsi energi di data center paling efisien dan naik hingga 45% di standard air-cooled data center.
  
===Thermal zone mapping===
+
===Analisis efisiensi energi===
Thermal zone mapping uses sensors and computer modeling to create a three-dimensional image of the hot and cool zones in a data center.
+
Analisis efisiensi energi mengukur penggunaan energi TI data center dan peralatan fasilitas. Analisis efisiensi energi tipikal mengukur faktor-faktor seperti power use effectiveness (PUE) data center terhadap standar industri, mengidentifikasi sumber ketidakefisienan mekanis dan elektrik, dan mengidentifikasi metrik manajemen udara. Namun, batasan dari sebagian besar metrik dan pendekatan saat ini adalah bahwa mereka tidak menyertakan TI dalam analisis. Studi kasus telah menunjukkan bahwa dengan menangani efisiensi energi secara holistik di data center, efisiensi besar dapat dicapai yang tidak mungkin dilakukan dengan cara lain.
  
This information can help to identify optimal positioning of data center equipment. For example, critical servers might be placed in a cool zone that is serviced by redundant AC units.
+
===Analisis dinamika fluida komputasi (CFD)===
 +
Jenis analisis ini menggunakan alat dan teknik canggih untuk memahami kondisi termal unik yang ada di setiap pusat data center—predicting suhu, aliran udara, dan perilaku tekanan data center untuk menilai kinerja dan konsumsi energi, menggunakan pemodelan numerik. Dengan memprediksi efek dari kondisi lingkungan ini, analisis CFD di data center dapat digunakan untuk memprediksi dampak rak dengan kepadatan tinggi yang dicampur dengan rak dengan kepadatan rendah dan dampak selanjutnya pada sumber pendinginan, praktik manajemen infrastruktur yang buruk, dan kegagalan AC atau AC shutdown untuk pemeliharaan terjadwal.
  
===Green data centers===
+
===Pemetaan zona termal===
 +
Pemetaan zona termal menggunakan sensor dan pemodelan komputer untuk membuat gambar tiga dimensi zona panas dan dingin di data center.
 +
Informasi ini dapat membantu mengidentifikasi posisi optimal peralatan data center. Misalnya, server kritis mungkin ditempatkan di zona sejuk yang dilayani oleh unit AC redundan.
  
[[File:Magazin Vauban E.jpg|thumb| This water-cooled data center in the [[Independent Port of Strasbourg|Port of Strasbourg]], France claims the attribute ''green''.]]
+
===Data Center ramah lingkungan===
Data centers use a lot of power, consumed by two main usages: the power required to run the actual equipment and then the power required to cool the equipment. The first category is addressed by designing computers and storage systems that are increasingly power-efficient.<ref name="ReferenceDC2"/> To bring down cooling costs data center designers try to use natural ways to cool the equipment. Many data centers are located near good fiber connectivity, power grid connections and also people-concentrations to manage the equipment, but there are also circumstances where the data center can be miles away from the users and don't need a lot of local management. Examples of this are the 'mass' data centers like Google or Facebook: these DC's are built around many standardized servers and storage-arrays and the actual users of the systems are located all around the world. After the initial build of a data center staff numbers required to keep it running are often relatively low: especially data centers that provide mass-storage or computing power which don't need to be near population centers.Data centers in arctic locations where outside air provides all cooling are getting more popular as cooling and electricity are the two main variable cost components.
+
Data Center menggunakan banyak daya, dikonsumsi oleh dua penggunaan utama: daya yang diperlukan untuk menjalankan peralatan sebenarnya dan kemudian daya yang diperlukan untuk mendinginkan peralatan. Kategori pertama ditangani dengan merancang komputer dan sistem penyimpanan yang semakin hemat daya. Untuk menurunkan biaya pendinginan, perancang pusat data mencoba menggunakan cara alami untuk mendinginkan peralatan. Banyak data center terletak di dekat konektivitas serat yang baik, koneksi jaringan listrik, dan juga pusat konsentrasi orang untuk mengelola peralatan, tetapi ada juga keadaan di mana data center berada ratusan kilometer jauhnya dari pengguna dan tidak memerlukan banyak manajemen lokal. Contohnya adalah pusat data 'massal' seperti Google atau Facebook: DC ini dibangun di sekitar banyak server standar dan storage array dan pengguna sebenarnya dari sistem ini berlokasi di seluruh dunia. Setelah pembangunan awal data center, jumlah staf yang diperlukan agar tetap berjalan seringkali relatif rendah: terutama data center yang menyediakan penyimpanan massal atau daya komputasi yang tidak perlu berada di dekat pusat populasi. Data Center di lokasi Arktik dengan udara luar menyediakan semua pendinginan semakin populer karena pendinginan dan listrik adalah dua komponen biaya variabel utama.
  
=== Energy reuse ===
+
=== Penggunaan kembali energi ===
The practice of cooling data centers is a topic of discussion. It is very difficult to reuse the heat which comes from air cooled data centers. For this reason, data center infrastructures are more often equipped with heat pumps. An alternative to heat pumps is the adoption of liquid cooling throughout a data center. Different liquid cooling techniques are mixed and matched to allow for a fully liquid cooled infrastructure which captures all heat in water. Different liquid technologies are categorised in 3 main groups, Indirect liquid cooling (water cooled racks), Direct liquid cooling (direct-to-chip cooling) and Total liquid cooling (complete immersion in liquid). This combination of technologies allows the creation of a [[thermal cascade]] as part of [[temperature chaining]] scenarios to create high temperature water outputs from the data center.
+
Praktik pendinginan data center menjadi topik diskusi. Sangat sulit untuk menggunakan kembali panas yang berasal dari pusat data berpendingin udara. Untuk itu, infrastruktur data center lebih sering dilengkapi dengan pompa panas. Alternatif untuk pompa panas adalah adopsi pendinginan cair di seluruh pusat data. Berbagai teknik pendinginan cairan dicampur dan disesuaikan untuk memungkinkan infrastruktur berpendingin cairan sepenuhnya yang menangkap semua panas dalam air. Teknologi cairan yang berbeda dikategorikan dalam 3 kelompok utama, Pendinginan cairan tidak langsung (rak berpendingin air), Pendinginan cairan langsung (pendinginan langsung ke chip) dan Pendinginan cairan total (pencelupan total dalam cairan). Kombinasi teknologi ini memungkinkan pembuatan [[thermal cascade]] sebagai bagian dari skenario [[temperature chaining]] untuk membuat output air bersuhu tinggi dari data center.
  
==Network infrastructure==
+
==Infrastruktur jaringan==
  
Communications in data centers today are most often based on [[computer network|networks]] running the [[Internet protocol|IP]] [[protocol (computing)|protocol]] suite. Data centers contain a set of [[Router (computing)|routers]] and [[Network switch|switches]] that transport traffic between the servers and to the outside world which are connected according to the [[data center network architectures|data center network architecture]]. [[Redundancy (engineering)|Redundancy]] of the Internet connection is often provided by using two or more upstream service providers (see [[Multihoming]]).
+
Komunikasi di data center saat ini paling sering didasarkan pada [[jaringan komputer]] yang menjalankan rangkaian [[IP]] [[protocol]]. Data Center berisi kumpulan [[Router]] dan [[Switch]] yang mengangkut lalu lintas antara server dan ke dunia luar yang terhubung sesuai dengan [[data center network architecture]]. [[Redundansi]] koneksi Internet sering disediakan dengan menggunakan dua atau lebih penyedia layanan upstream (lihat [[Multihoming]]).
  
Some of the servers at the data center are used for running the basic Internet and [[intranet]] services needed by internal users in the organization, e.g., e-mail servers, [[proxy server]]s, and [[Domain Name System|DNS]] servers.
+
Beberapa server di data center digunakan untuk menjalankan layanan dasar Internet dan [[intranet]] yang dibutuhkan oleh pengguna internal dalam organisasi, misalnya, server email, [[server proxy]], dan [[DNS]] server.
  
Network security elements are also usually deployed: [[firewall (networking)|firewalls]], [[VPN]] [[Gateway (computer networking)|gateways]], [[intrusion detection system]]s, etc. Also common are monitoring systems for the network and some of the applications. Additional off site monitoring systems are also typical, in case of a failure of communications inside the data center.
+
Elemen keamanan jaringan juga biasanya digunakan: [[Firewall]], [[VPN]] [[Gateway]], [[Intrusion Detection System]], dll. Yang juga umum adalah sistem pemantauan untuk jaringan dan beberapa aplikasi. Sistem pemantauan di luar lokasi tambahan juga tipikal, jika terjadi kegagalan komunikasi di dalam pusat data.
  
 
==Data center infrastructure management==
 
==Data center infrastructure management==
Data center infrastructure management (DCIM) is the integration of information technology (IT) and facility management disciplines to centralize monitoring, management and intelligent capacity planning of a data center's critical systems. Achieved through the implementation of specialized software, hardware and sensors, DCIM enables common, real-time monitoring and management platform for all interdependent systems across IT and facility infrastructures.
+
Data center infrastructure management (DCIM) adalah integrasi teknologi informasi (TI) dan disiplin manajemen fasilitas untuk memusatkan pemantauan, manajemen, dan perencanaan kapasitas cerdas dari sistem data center kritis. Dicapai melalui penerapan perangkat lunak, perangkat keras, dan sensor khusus, DCIM memungkinkan platform pemantauan dan manajemen bersama yang real-time untuk semua sistem yang saling bergantung di seluruh TI dan infrastruktur fasilitas.
  
Depending on the type of implementation, DCIM products can help data center managers identify and eliminate sources of risk to increase availability of critical IT systems. DCIM products also can be used to identify interdependencies between facility and IT infrastructures to alert the facility manager to gaps in system redundancy, and provide dynamic, holistic benchmarks on power consumption and efficiency to measure the effectiveness of "green IT" initiatives.
+
Tergantung pada jenis penerapannya, produk DCIM dapat membantu manajer data center mengidentifikasi dan menghilangkan sumber risiko untuk meningkatkan ketersediaan sistem TI yang penting. Produk DCIM juga dapat digunakan untuk mengidentifikasi interdependensi antara fasilitas dan infrastruktur TI untuk mengingatkan manajer fasilitas akan kesenjangan redundansi sistem, dan memberikan tolok ukur yang dinamis dan holistik pada konsumsi daya dan efisiensi untuk mengukur efektivitas inisiatif "green TI".
  
It's important to measure and understand data center efficiency metrics. A lot of the discussion in this area has focused on energy issues, but other metrics beyond the PUE can give a more detailed picture of the data center operations. Server, storage, and staff utilization metrics can contribute to a more complete view of an enterprise data center. In many cases, disc capacity goes unused and in many instances the organizations run their servers at 20% utilization or less. More effective automation tools can also improve the number of servers or virtual machines that a single admin can handle.
+
Penting untuk mengukur dan memahami metrik efisiensi data center. Banyak diskusi di bidang ini berfokus pada masalah energi, tetapi metrik lain di luar PUE dapat memberikan gambaran yang lebih detail tentang operasi data center. Metrik penggunaan server, penyimpanan, dan staf dapat berkontribusi pada tampilan data center perusahaan yang lebih lengkap. Dalam banyak kasus, kapasitas disk tidak terpakai dan dalam banyak kasus organisasi menjalankan server mereka dengan penggunaan 20% atau kurang. Alat otomatisasi yang lebih efektif juga dapat meningkatkan jumlah server atau mesin virtual yang dapat ditangani oleh satu admin.
  
DCIM providers are increasingly linking with [[computational fluid dynamics]] providers to predict complex airflow patterns in the data center. The CFD component is necessary to quantify the impact of planned future changes on cooling resilience, capacity and efficiency.
+
Penyedia DCIM semakin terhubung dengan [[computational fluid dynamics]] penyedia untuk memprediksi pola aliran udara yang kompleks di pusat data. Komponen CFD diperlukan untuk mengukur dampak dari perubahan yang direncanakan di masa mendatang pada ketahanan, kapasitas, dan efisiensi pendinginan.
  
==Managing the capacity of a data center==
+
==Mengelola kapasitas pusat data==
 +
Beberapa parameter dapat membatasi kapasitas data center. Untuk penggunaan jangka panjang, batasan utamanya adalah area yang tersedia, lalu daya yang tersedia. Pada tahap pertama siklus hidupnya, data center akan melihat ruang yang ditempati tumbuh lebih cepat daripada energi yang dikonsumsi. Dengan pemadatan konstan teknologi IT baru, kebutuhan energi akan menjadi dominan, menyamai kemudian mengatasi kebutuhan di daerah (siklus fase kedua kemudian ketiga). Perkembangan dan penggandaan objek yang terkoneksi, kebutuhan akan penyimpanan dan pengolahan data menyebabkan kebutuhan data center semakin berkembang pesat. Oleh karena itu penting untuk menentukan strategi data center sebelum terpojok. Keputusan, konsepsi, dan siklus pembangunan berlangsung beberapa tahun. Oleh karena itu, sangat penting untuk memulai pertimbangan strategis ini ketika pusat data mencapai sekitar 50% dari kapasitas dayanya. Penggunaan maksimum pusat data perlu distabilkan sekitar 85%, baik dalam daya atau area yang ditempati. Sumber daya yang dikelola dengan demikian akan memungkinkan zona rotasi untuk mengelola penggantian perangkat keras dan akan memungkinkan kohabitasi sementara generasi lama dan baru. Dalam kasus di mana batas ini akan dilampaui secara terus-menerus, tidak mungkin untuk melanjutkan ke penggantian material, yang akan selalu menyebabkan sistem informasi tercekik. Pusat data adalah sumber daya dalam sistem informasinya sendiri, dengan batasan waktu dan manajemennya sendiri (masa hidup 25 tahun), oleh karena itu perlu dipertimbangkan dalam kerangka perencanaan jangka menengah SI (antara 3 dan 5 tahun).
  
[[File:Capacity of a datacenter - Life Cycle.jpg|thumbnail|left|Capacity of a datacenter - Life Cycle]]
+
==Aplikasi==
Several parameters may limit the capacity of a data center. For long term usage, the main limitations will be available area, then available power. In the first stage of its life cycle, a data center will see its occupied space growing more rapidly than consumed energy. With constant densification of new IT technologies, the need in energy is going to become dominant, equaling then overcoming the need in area (second then third phase of cycle). The development and multiplication of connected objects, the needs in storage and data treatment lead to the necessity of data centers to grow more and more rapidly. It is therefore important to define a data center strategy before being cornered. The decision, conception and building cycle lasts several years. Therefore, it is imperative to initiate this strategic consideration when the data center reaches about 50% of its power capacity. Maximum occupation of a data center needs to be stabilized around 85%, be it in power or occupied area. Resources thus managed will allow a rotation zone for managing hardware replacement and will allow temporary cohabitation of old and new generations. In the case where this limit would be overcrossed durably, it would not be possible to proceed to material replacements, which would invariably lead to smothering the information system. The data center is a resource in its own right of the information system, with its own constraints of time and management (life span of 25 years), it therefore needs to be taken into consideration in the framework of the SI midterm planning (between 3 and 5 years).
+
Tujuan utama data center adalah menjalankan aplikasi sistem TI yang menangani bisnis inti dan data operasional organisasi. Sistem tersebut mungkin merupakan hak milik dan dikembangkan secara internal oleh organisasi, atau dibeli dari [[perangkat lunak perusahaan]] vendor. Aplikasi umum tersebut adalah sistem [[Enterprise resource planning|ERP]] dan [[Customer relationship management|CRM]].
  
==Applications==
+
Data Center mungkin hanya peduli dengan [[arsitektur operasi]] atau mungkin menyediakan layanan lain juga.
  
 +
Seringkali aplikasi ini terdiri dari banyak host, masing-masing menjalankan satu komponen. Komponen umum dari aplikasi tersebut adalah [[database]], [[file server]], [[application server]], [[middleware]], dan berbagai lainnya.
  
The main purpose of a data center is running the IT systems applications that handle the core business and operational data of the organization. Such systems may be proprietary and developed internally by the organization, or bought from [[enterprise software]] vendors. Such common applications are [[Enterprise resource planning|ERP]] and [[Customer relationship management|CRM]] systems.
+
Data Center juga digunakan untuk off-site backup. Perusahaan dapat berlangganan layanan backup yang disediakan oleh data center. Ini sering digunakan bersamaan dengan [[Tape drive|backup tape]]. Backup dapat diambil dari server secara lokal ke kaset. Namun, kaset yang disimpan di lokasi menimbulkan ancaman keamanan dan juga rentan terhadap kebakaran dan banjir. Perusahaan yang lebih besar juga dapat mengirim backup mereka ke off-site untuk keamanan tambahan. Ini dapat dilakukan dengan membuat backup ke data center. Backup terenkripsi dapat dikirim melalui Internet ke data center lain untuk disimpan dengan aman.
  
A data center may be concerned with just [[operations architecture]] or it may provide other services as well.
+
Untuk penerapan cepat atau [[pemulihan bencana]], beberapa vendor perangkat keras besar telah mengembangkan solusi seluler/modular yang dapat dipasang dan dioperasikan dalam waktu yang sangat singkat. Perusahaan seperti
  
Often these applications will be composed of multiple hosts, each running a single component. Common components of such applications are [[database]]s, [[file server]]s, [[application server]]s, [[middleware]], and various others.
 
 
Data centers are also used for off site backups. Companies may subscribe to backup services provided by a data center. This is often used in conjunction with [[Tape drive|backup tapes]]. Backups can be taken off servers locally on to tapes. However, tapes stored on site pose a security threat and are also susceptible to fire and flooding. Larger companies may also send their backups off site for added security. This can be done by backing up to a data center. Encrypted backups can be sent over the Internet to another data center where they can be stored securely.
 
 
For quick deployment or [[disaster recovery]], several large hardware vendors have developed mobile/modular solutions that can be installed and made operational in very short time. Companies such as
 
[[File:Edge Night 02.jpg|thumb|A modular data center connected to the power grid at a utility substation]]
 
 
* [[Cisco Systems]],
 
* [[Cisco Systems]],
 
* [[Sun Microsystems]] ([[Sun Modular Datacenter]]),
 
* [[Sun Microsystems]] ([[Sun Modular Datacenter]]),
Line 292: Line 279:
 
* [[FiberHome Technologies Group]] (FitMDC Modular Data Center Solution),  
 
* [[FiberHome Technologies Group]] (FitMDC Modular Data Center Solution),  
 
* [[Huawei]] (Container Data Center Solution),
 
* [[Huawei]] (Container Data Center Solution),
* [[Google]] ([[Google Modular Data Center]]) have developed systems that could be used for this purpose.
+
* [[Google]] ([[Google Modular Data Center]]) telah mengembangkan sistem yang dapat digunakan untuk tujuan ini.
* BASELAYER has a patent on the software defined modular data center.
+
* BASELAYER memiliki paten pada software defined modular data center.
  
==US wholesale and retail colocation providers==
+
==US wholesale dan retail colocation provider==
According to data provided in the third quarter of 2013 by Synergy Research Group, "the scale of the wholesale colocation market in the United States is very significant relative to the retail market, with Q3 wholesale revenues reaching almost $700 million. [[Digital Realty]] Trust is the wholesale market leader, followed at a distance by [[DuPont Fabros]]." Synergy Research also described the US colocation market as the most mature and well-developed in the world, based on revenue and the continued adoption of cloud infrastructure services.
+
Menurut data yang diberikan pada kuartal ketiga tahun 2013 oleh Synergy Research Group, "skala pasar colocation grosir di Amerika Serikat relatif signifikan terhadap pasar ritel, dengan pendapatan grosir Q3 mencapai hampir $700 juta. [[Realty Digital]] Trust adalah pemimpin pasar grosir, diikuti dari jauh oleh [[DuPont Fabros]]." Synergy Research juga menggambarkan pasar colocation AS sebagai yang paling matang dan berkembang dengan baik di dunia, berdasarkan pendapatan dan adopsi berkelanjutan dari layanan infrastruktur cloud.
;Estimates from Synergy Research Group's Q3 2013 data.
+
;Estimasi dari data Q3 2013 Synergy Research Group.
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 333: Line 320:
 
| [[Internap]] || 2%
 
| [[Internap]] || 2%
 
|}
 
|}
 
 
  
 
==Pranala Menarik==
 
==Pranala Menarik==
Line 340: Line 325:
 
* [[Data Center Tier Standard]]
 
* [[Data Center Tier Standard]]
 
* [[Data Center Perhitungan Cost]]
 
* [[Data Center Perhitungan Cost]]
 +
* [[Data Center: Konsep Design Pembangunan Data Center Sesuai Standard]]
 +
* [[Data Center: How to design and build a data center]]

Latest revision as of 10:40, 27 April 2023

data center (American English) atau data centre (British English) adalah fasilitas yang digunakan untuk menampung sistem komputer dan komponen terkait, seperti telekomunikasi dan sistem penyimpanan. Ini umumnya mencakup redundan atau komponen dan infrastruktur cadangan untuk catu daya, koneksi komunikasi data, kontrol lingkungan (mis. AC, pencegah kebakaran) dan berbagai perangkat keamanan. Pusat data besar adalah operasi skala industri yang menggunakan listrik sebanyak kota kecil.

Sejarah

Data center berawal pada ruang komputer besar di tahun 1940-an, yang ditandai dengan ENIAC, salah satu contoh paling awal dari data center. Sistem komputer awal, rumit untuk dioperasikan dan dipelihara, membutuhkan lingkungan khusus untuk beroperasi. Banyak kabel diperlukan untuk menyambungkan semua komponen, dan metode untuk menampung dan mengaturnya telah dirancang seperti rak|19 inci standar untuk memasang peralatan, raised floor, dan cable tray (dipasang di atas kepala atau di bawah lantai yang ditinggikan). Satu mainframe membutuhkan banyak daya, dan harus didinginkan untuk menghindari panas berlebih. Keamanan menjadi penting – komputer mahal, dan sering digunakan untuk tujuan militer. Oleh karena itu, pedoman desain dasar untuk mengontrol akses ke ruang komputer telah dibuat.

Selama ledakan industri komputer mikro, dan khususnya selama tahun 1980-an, pengguna mulai menyebarkan komputer di mana-mana, dalam banyak kasus dengan sedikit atau tanpa peduli tentang persyaratan pengoperasian. Namun, karena teknologi informasi (TI) operasi mulai tumbuh dalam kompleksitas, organisasi semakin sadar akan kebutuhan untuk mengontrol sumber daya TI. Munculnya Unix dari awal 1970-an menyebabkan proliferasi selanjutnya dari sistem operasi Linux-kompatibel PC yang tersedia secara bebas selama tahun 1990-an. Ini disebut "server", sebagai timesharing sistem operasi seperti Unix sangat bergantung pada model klien-server untuk memfasilitasi berbagi sumber daya unik antara banyak pengguna. Ketersediaan peralatan jaringan yang murah, ditambah dengan standar baru untuk jaringan pengkabelan terstruktur, memungkinkan untuk menggunakan desain hierarkis yang menempatkan server di ruangan tertentu di dalam perusahaan. Penggunaan istilah "data center", sebagaimana diterapkan pada ruang komputer yang dirancang khusus, mulai mendapat pengakuan populer saat ini.

Ledakan pusat data terjadi selama dot-com bubble tahun 1997–2000. Perusahaan memerlukan konektivitas Internet yang cepat dan pengoperasian tanpa henti untuk menerapkan sistem dan membangun kehadiran di Internet. Memasang peralatan seperti itu tidak layak untuk banyak perusahaan kecil. Banyak perusahaan mulai membangun fasilitas yang sangat besar, yang disebut Internet data center (IDC), yang menyediakan klien komersial berbagai solusi untuk penerapan dan pengoperasian sistem. Teknologi dan praktik baru dirancang untuk menangani skala dan persyaratan operasional dari operasi skala besar tersebut. Praktik-praktik ini akhirnya bermigrasi ke pusat data pribadi, dan diadopsi sebagian besar karena hasil praktisnya. Pusat data untuk komputasi awan disebut cloud data center (CDC). Namun saat ini, pembagian istilah-istilah tersebut hampir menghilang dan diintegrasikan ke dalam istilah "data center".

Dengan peningkatan penggunaan cloud computing, organisasi bisnis dan pemerintah meneliti pusat data ke tingkat yang lebih tinggi di berbagai bidang seperti keamanan, ketersediaan, dampak lingkungan, dan kepatuhan terhadap standar. Dokumen standar dari grup profesional terakreditasi, seperti Telecommunications Industry Association, menetapkan persyaratan untuk desain pusat data. Metrik operasional terkenal untuk data-center availability dapat digunakan untuk mengevaluasi commercial impact gangguan. Pengembangan berlanjut dalam praktik operasional, dan juga dalam desain data center yang ramah lingkungan. Data center biasanya menghabiskan banyak biaya untuk membangun dan memelihara.

Persyaratan untuk modern data center

Operasi TI adalah aspek penting dari sebagian besar operasi organisasi di seluruh dunia. Salah satu perhatian utama adalah kelangsungan bisnis; perusahaan mengandalkan sistem informasi mereka untuk menjalankan operasi mereka. Jika suatu sistem menjadi tidak tersedia, operasi perusahaan dapat terganggu atau dihentikan sama sekali. Penyediaan infrastruktur yang andal untuk operasional TI diperlukan untuk meminimalkan kemungkinan gangguan. Keamanan informasi juga menjadi perhatian, dan untuk alasan ini pusat data harus menawarkan lingkungan yang aman yang meminimalkan kemungkinan pelanggaran keamanan. Oleh karena itu, data center harus menjaga standar tinggi untuk memastikan integritas dan fungsionalitas lingkungan komputer yang dihostingnya. Hal ini dicapai melalui redundansi pendinginan mekanis dan sistem daya (termasuk generator daya cadangan darurat) yang melayani data center bersama dengan kabel serat optik.

Telecommunications Infrastructure Standard for Data Center Telecommunications Industry Association menetapkan persyaratan minimum untuk infrastruktur telekomunikasi data center dan ruang komputer termasuk data center perusahaan penyewa tunggal dan pusat data hosting Internet multi-penyewa. Topologi yang diusulkan dalam dokumen ini dimaksudkan agar dapat diterapkan pada data center dengan ukuran berapa pun.

Telcordia GR-3160, NEBS Requirements for Telecommunications Data Center Equipment and Spaces, memberikan panduan untuk ruang data center dalam jaringan telekomunikasi, dan persyaratan lingkungan untuk peralatan yang ditujukan untuk pemasangan di ruang tersebut. Kriteria ini dikembangkan bersama oleh Telcordia dan perwakilan industri. Mereka dapat diterapkan ke ruang data center yang menampung pemrosesan data atau peralatan Teknologi Informasi (TI). Peralatan tersebut dapat digunakan untuk:

  • Mengoperasikan dan mengelola jaringan telekomunikasi operator
  • Menyediakan aplikasi berbasis data center langsung ke pelanggan operator
  • Menyediakan aplikasi yang dihosting untuk pihak ketiga untuk memberikan layanan kepada pelanggan mereka
  • Berikan kombinasi dari ini dan aplikasi data center serupa

Pengoperasian data center yang efektif memerlukan investasi yang seimbang baik dalam fasilitas maupun peralatan yang ada. Langkah pertama adalah menetapkan lingkungan fasilitas dasar yang sesuai untuk pemasangan peralatan. Standardisasi dan modularitas dapat menghasilkan penghematan dan efisiensi dalam desain dan konstruksi data center telekomunikasi.

Standarisasi berarti rekayasa bangunan dan peralatan terpadu. Modularitas memiliki manfaat skalabilitas dan pertumbuhan yang lebih mudah, bahkan ketika prakiraan perencanaan kurang optimal. Untuk alasan ini, data center telekomunikasi harus direncanakan dalam blok bangunan berulang dari peralatan, dan peralatan daya dan pendukung (pengkondisian) yang terkait jika dimungkinkan. Penggunaan sistem terpusat khusus memerlukan perkiraan kebutuhan masa depan yang lebih akurat untuk mencegah mahalnya pembangunan, atau mungkin lebih buruk — dalam pembangunan yang gagal memenuhi kebutuhan di masa depan.

Data center "lights-out", juga dikenal sebagai data center yang digelapkan atau gelap, adalah data center yang, idealnya, menghilangkan kebutuhan akan akses langsung oleh personel, kecuali dalam keadaan luar biasa. Karena kurangnya kebutuhan staf untuk masuk ke data center, maka bisa dioperasikan tanpa penerangan. Semua perangkat diakses dan dikelola oleh sistem jarak jauh, dengan program otomasi yang digunakan untuk melakukan operasi tanpa pengawasan. Selain penghematan energi, pengurangan biaya kepegawaian, dan kemampuan untuk menemukan lokasi lebih jauh dari pusat populasi, menerapkan data center tanpa lampu mengurangi ancaman serangan berbahaya terhadap infrastruktur.

Ada kecenderungan untuk memodernisasi data center untuk memanfaatkan kinerja dan efisiensi energi peningkatan peralatan dan kemampuan TI yang lebih baru, seperti cloud computing. Proses ini juga dikenal sebagai transformasi data center.

Organisasi sedang mengalami pertumbuhan TI yang cepat tetapi data center mereka menua. Perusahaan riset industri International Data Corporation (IDC) menetapkan usia rata-rata sebuah data center adalah sembilan tahun. Gartner, perusahaan riset lainnya, mengatakan data center yang berusia lebih dari tujuh tahun sudah usang. Pertumbuhan data (163 zettabytes pada tahun 2025) merupakan salah satu faktor yang mendorong perlunya modernisasi data center.

Pada bulan Mei 2011, organisasi riset pusat data Uptime Institute melaporkan bahwa 36 persen dari perusahaan besar yang disurvei diperkirakan akan kehabisan kapasitas TI dalam 18 bulan ke depan.

Transformasi data center mengambil pendekatan langkah demi langkah melalui proyek terintegrasi yang dilakukan dari waktu ke waktu. Ini berbeda dari metode tradisional pemutakhiran data center yang menggunakan pendekatan serial dan silo. Proyek tipikal dalam inisiatif transformasi pusat data meliputi standardisasi/konsolidasi, virtualisasi, otomatisasi dan keamanan.

  • Standardisasi/konsolidasi: Tujuan proyek ini adalah untuk mengurangi jumlah data center yang mungkin dimiliki organisasi besar. Proyek ini juga membantu mengurangi jumlah perangkat keras, platform perangkat lunak, alat, dan proses dalam data center. Organisasi mengganti peralatan data center yang sudah tua dengan yang lebih baru yang memberikan peningkatan kapasitas dan kinerja. Platform komputasi, jaringan, dan manajemen distandarisasi sehingga lebih mudah dikelola.
  • Virtualisasi: Ada kecenderungan untuk menggunakan teknologi virtualisasi TI untuk mengganti atau menggabungkan beberapa peralatan data center, seperti server. Virtualisasi membantu menurunkan biaya modal dan operasional, serta mengurangi konsumsi energi. Teknologi virtualisasi juga digunakan untuk membuat desktop virtual, yang kemudian dapat dihosting di data center dan disewakan secara berlangganan. Data yang dikeluarkan oleh bank investasi Lazard Capital Markets melaporkan bahwa 48 persen operasi perusahaan akan divirtualisasikan pada tahun 2012. Gartner memandang virtualisasi sebagai katalis untuk modernisasi.
  • Otomatisasi: Otomatisasi data center melibatkan tugas otomatisasi seperti penyediaan, konfigurasi, penambalan, manajemen rilis, dan kepatuhan. Karena perusahaan kekurangan pekerja TI yang terampil, otomatisasi tugas membuat operasi data center menjadi lebih efisien.
  • Mengamankan: Di data center modern, keamanan data pada sistem virtual terintegrasi dengan keamanan infrastruktur fisik yang ada. Keamanan data center modern harus mempertimbangkan keamanan fisik, keamanan jaringan, dan keamanan data dan pengguna.

Carrier neutrality

Saat ini banyak pusat data dijalankan oleh Internet Service Provider(ISP) semata-mata untuk tujuan menghosting Server mereka sendiri dan pihak ketiga].

Namun secara tradisional data center dibangun hanya untuk penggunaan satu perusahaan besar, atau sebagai carrier hotel atau Network-neutral data center.

Fasilitas ini memungkinkan interkoneksi operator dan mitra, dan bertindak sebagai hub fiber regional yang melayani bisnis lokal selain menghosting konten Server.

Data center Level and Tier

Telecommunications Industry Association adalah asosiasi perdagangan yang diakreditasi oleh ANSI (American National Standards Institutea). Pada tahun 2005 menerbitkan ANSI/TIA-942,Telecommunications Infrastructure Standard for Data Centers, yang menetapkan empat tingkat pusat data secara menyeluruh dan terukur. TIA-942 diubah pada tahun 2008, 2010, 2014 dan 2017. TIA-942:Data Center Standards Overview menjelaskan persyaratan untuk infrastruktur data center. Yang paling sederhana adalah pusat data Level 1, yang pada dasarnya adalah ruang server, mengikuti panduan dasar untuk pemasangan sistem komputer. Level yang paling ketat adalah pusat data Level 4, yang dirancang untuk menampung sistem komputer yang paling kritis, dengan subsistem yang sepenuhnya redundan, kemampuan untuk terus beroperasi selama periode waktu yang tidak terbatas selama pemadaman listrik utama.

Uptime Institute, sebuah penelitian data center dan organisasi layanan profesional yang berbasis di Seattle, WA mendefinisikan apa yang sekarang disebut sebagai "Tiers" atau lebih tepatnya, "Tier Standard". Level Standar Tingkat Uptime menjelaskan ketersediaan pemrosesan data dari perangkat keras di suatu lokasi. Semakin tinggi level Tier, semakin besar ketersediaan yang diharapkan. Standar Tingkat Uptime Institute ditunjukkan di bawah ini.

Untuk revisi TIA-942 2014, organisasi TIA dan Uptime Institute sepakat bahwa TIA akan menghapus semua penggunaan kata "Tier" dari spesifikasi TIA-942 mereka yang dipublikasikan, dengan menggunakan terminologi tersebut hanya akan digunakan oleh Uptime Institute untuk mendeskripsikan sistemnya.

Klasifikasi lain juga ada. Misalnya, German Datacenter Star Audit program menggunakan proses audit untuk mengesahkan lima tingkat "gratification" yang memengaruhi data center yang critical.

Uptime Institute Tier Standard
Tier level Persyaratan
I
  • Jalur distribusi non-redundan tunggal yang melayani beban kritis
  • Komponen kritis non-redundan
II
  • Memenuhi semua persyaratan Tier I, selain:
  • Komponen kritis yang redundan
  • Komponen kritis harus dapat diisolasi dan dipindahkan dari layanan sambil tetap memberikan kapasitas N ke beban kritis.
III
  • Memenuhi semua persyaratan Tier II selain:
  • Beberapa jalur distribusi independen yang berbeda melayani beban kritis peralatan TI
  • Semua peralatan TI harus dual-powered yang dilengkapi dengan dua sumber PLN & UPS redundan yang berbeda. Perangkat IT berkabel tunggal harus menggunakan Sakelar Transfer Titik Penggunaan agar perangkat dapat menerima daya dari dan memilih di antara dua pemasok UPS.
  • Setiap komponen kapasitas kritis, jalur distribusi, dan komponen sistem kritis apa pun harus dapat sepenuhnya kompatibel dengan topologi arsitektur situs yang diisolasi untuk acara yang direncanakan (penggantian, pemeliharaan, atau peningkatan) sambil tetap menyediakan kapasitas N ke kritis beban.
  • Sistem produksi energi di lokasi (seperti generator listrik) tidak boleh memiliki batasan waktu kerja pada kondisi lokasi dan beban desain.
IV
  • Memenuhi semua persyaratan Tier III selain:
  • Beberapa jalur distribusi independen yang berbeda dan aktif melayani beban kritis
  • Kompartemenisasi komponen kapasitas kritis dan jalur distribusi
  • Sistem kritis harus dapat secara mandiri menyediakan kapasitas N ke beban kritis setelah kesalahan atau kegagalan tunggal
  • Pendinginan yang continuous diberikan untuk sistem IT dan UPS.

Sementara salah satu sistem ketahanan data center industri diusulkan pada saat ketersediaan dinyatakan sebagai teori, dan sejumlah 'Nine' (angka sembilan) di sisi kanan titik desimal, secara umum disepakati bahwa pendekatan ini agak menipu. atau terlalu sederhana, sehingga vendor saat ini biasanya membahas ketersediaan secara mendetail yang sebenarnya dapat mereka pengaruhi, dan dalam istilah yang jauh lebih spesifik. Oleh karena itu, sistem leveling yang tersedia saat ini tidak lagi menentukan hasilnya dalam persentase waktu aktif.

Catatan: Uptime Institute juga mengklasifikasikan Tingkatan untuk masing-masing dari tiga fase pusat data, dokumen desainnya, fasilitas yang dibangun, dan keberlanjutan operasionalnya yang berkelanjutan.

Pertimbangan desain

Data center dapat menempati satu ruangan di gedung, satu lantai atau lebih, atau seluruh gedung. Sebagian besar peralatan seringkali berupa server yang dipasang di lemari rak 19 inci, yang biasanya ditempatkan dalam satu baris membentuk koridor (disebut lorong) di antaranya. Ini memungkinkan orang mengakses bagian depan dan belakang setiap kabinet. Ukuran server sangat berbeda dari server 1U hingga silo penyimpanan besar yang berdiri bebas yang menempati banyak ruang lantai. Beberapa peralatan seperti perangkat komputer mainframe dan penyimpanan seringkali sebesar rak itu sendiri, dan ditempatkan di sampingnya. Pusat data yang sangat besar dapat menggunakan shipping containers yang masing-masing dikemas dengan 1.000 server atau lebih; ketika perbaikan atau pemutakhiran diperlukan, seluruh wadah diganti (alih-alih memperbaiki server individual).

Kode bangunan lokal dapat mengatur ketinggian langit-langit minimum.

Design programming

Design programming, juga dikenal sebagai architectural programming, adalah proses penelitian dan pengambilan keputusan untuk mengidentifikasi ruang lingkup proyek desain. Selain arsitektur bangunan itu sendiri, ada tiga elemen untuk mendesain pemrograman untuk data center: facility topology design (space planning), engineering infrastructure design (sistem mekanis seperti pendinginan dan sistem kelistrikan termasuk daya) dan technology infrastructure design (cable plant). Masing-masing akan dipengaruhi oleh penilaian kinerja dan pemodelan untuk mengidentifikasi kesenjangan yang berkaitan dengan keinginan kinerja pemilik fasilitas dari waktu ke waktu.

Berbagai vendor yang menyediakan data center design service mendefinisikan langkah-langkah data center design sedikit berbeda, namun semuanya menangani aspek dasar yang sama seperti yang diberikan di bawah ini.

Kriteria pemodelan

Kriteria pemodelan digunakan untuk mengembangkan skenario masa depan untuk ruang, daya, pendinginan, dan biaya di data center. Tujuannya adalah untuk membuat rencana induk dengan parameter seperti jumlah, ukuran, lokasi, topologi, tata letak sistem lantai TI, serta teknologi dan konfigurasi daya dan pendinginan. Tujuan dari ini adalah untuk memungkinkan penggunaan yang efisien dari sistem mekanik dan listrik yang ada dan juga pertumbuhan di pusat data yang ada tanpa perlu membangun gedung baru dan lebih meningkatkan pasokan listrik yang masuk.

Rekomendasi desain

Rekomendasi/rencana desain umumnya mengikuti fase kriteria pemodelan. Infrastruktur teknologi optimal diidentifikasi dan kriteria perencanaan dikembangkan, seperti kapasitas daya kritis, kebutuhan daya data center keseluruhan menggunakan PUE (power utilization efficiency) yang disepakati, kapasitas pendinginan mekanis, kilowatt per kabinet, raised floor space, dan tingkat ketahanan untuk fasilitas.

Desain konseptual

Desain konseptual mewujudkan rekomendasi atau rencana desain dan harus mempertimbangkan skenario "what-if" untuk memastikan semua hasil operasional terpenuhi untuk membuktikan fasilitas di masa depan. Tata letak lantai konseptual harus didorong oleh persyaratan kinerja TI serta biaya siklus hidup yang terkait dengan permintaan TI, efisiensi energi, efisiensi biaya, dan ketersediaan. Pemeriksaan masa depan juga akan mencakup kemampuan ekspansi, yang seringkali disediakan di pusat data modern melalui desain modular. Ini memungkinkan ruang lantai yang lebih tinggi untuk dipasang di data center saat menggunakan pembangkit listrik utama yang ada di fasilitas tersebut.

Detailed design

Detailed designdilakukan setelah desain konseptual yang sesuai ditentukan, biasanya termasuk pembuktian konsep. Fase detailed design harus mencakup informasi arsitektur, struktural, mekanik dan listrik rinci dan spesifikasi fasilitas. Pada tahap ini pengembangan skema fasilitas dan dokumen konstruksi serta skema dan spesifikasi kinerja dan perincian khusus dari semua infrastruktur teknologi, desain infrastruktur TI terperinci dan dokumentasi infrastruktur TI diproduksi.

Mechanical engineering infrastructure design

Mechanical engineering infrastructure design membahas sistem mekanis yang terlibat dalam memelihara lingkungan interior data center, seperti pemanas, ventilasi, dan air conditioning (HVAC); peralatan pelembapan dan dehumidifikasi; tekanan udara; dan seterusnya.

Tahap proses desain ini harus ditujukan untuk menghemat ruang dan biaya, sambil memastikan tujuan bisnis dan keandalan terpenuhi serta mencapai persyaratan PUE dan ramah lingkungan. Desain modern mencakup modularisasi dan penskalaan beban TI, dan memastikan belanja modal untuk konstruksi bangunan dioptimalkan.

Electrical engineering infrastructure design

Electrical Engineering infrastructure design difokuskan pada perancangan konfigurasi kelistrikan yang mengakomodir berbagai kebutuhan keandalan dan ukuran data center. Aspek dapat mencakup perencanaan layanan utilitas; distribusi, switching dan bypass dari sumber daya; sistem uninterruptible power source (UPS); dan banyak lagi.

Desain ini harus sesuai dengan standar energi dan praktik terbaik sekaligus memenuhi tujuan bisnis. Konfigurasi kelistrikan harus dioptimalkan dan kompatibel secara operasional dengan kemampuan pengguna data center. Desain kelistrikan modern bersifat modular dan terukur, dan tersedia untuk kebutuhan tegangan rendah dan menengah serta DC (arus searah).

Technology infrastructure design

Technology infrastructure design membahas sistem kabel telekomunikasi yang berjalan di seluruh data center. Terdapat sistem pengkabelan untuk semua lingkungan data center, termasuk pengkabelan horizontal, suara, modem, dan layanan telekomunikasi faksimili, peralatan peralihan lokasi, koneksi manajemen komputer dan telekomunikasi, koneksi keyboard/video/mouse, dan komunikasi data. Wide Area Network, Local Area Network, dan storage area network harus terhubung dengan sistem pensinyalan gedung lainnya (misalnya kebakaran, keamanan, listrik, HVAC, EMS).

Ekspektasi Ketersediaan

Semakin tinggi kebutuhan ketersediaan data center, semakin tinggi modal dan biaya operasional untuk membangun dan mengelolanya. Kebutuhan bisnis harus mendikte tingkat ketersediaan yang dibutuhkan dan harus dievaluasi berdasarkan karakterisasi kekritisan sistem TI, perkiraan analisis biaya dari skenario yang dimodelkan. Dengan kata lain, bagaimana tingkat ketersediaan yang tepat dapat dipenuhi dengan kriteria desain untuk menghindari risiko keuangan dan operasional sebagai akibat dari downtime?

Jika perkiraan biaya downtime dalam satuan waktu tertentu melebihi biaya modal yang diamortisasi dan biaya operasional, tingkat ketersediaan yang lebih tinggi harus diperhitungkan dalam desain data center. Jika biaya untuk menghindari waktu henti jauh melebihi biaya waktu henti itu sendiri, tingkat ketersediaan yang lebih rendah harus diperhitungkan dalam desain.

Pemilihan Lokasi

Aspek-aspek seperti kedekatan dengan jaringan listrik yang tersedia, infrastruktur telekomunikasi, layanan jaringan, jalur transportasi, dan layanan darurat dapat memengaruhi biaya, risiko, keamanan, dan faktor lain yang harus dipertimbangkan untuk desain data center. Sementara beragam faktor lokasi diperhitungkan (misalnya jalur penerbangan, penggunaan di sekitar, risiko geologis), akses ke daya yang tersedia yang sesuai sering kali merupakan waktu tunggu yang paling lama. Lokasi memengaruhi desain data center juga karena kondisi iklim menentukan teknologi pendinginan apa yang harus diterapkan. Pada gilirannya hal ini berdampak pada waktu kerja dan biaya yang terkait dengan pendinginan. Misalnya, topologi dan biaya pengelolaan data center di iklim yang hangat dan lembab akan sangat berbeda dengan pengelolaan di iklim yang sejuk dan kering.

Modularitas dan fleksibilitas

Modularitas dan fleksibilitas adalah elemen kunci yang memungkinkan data center tumbuh dan berubah seiring waktu. Modul data center adalah blok bangunan terstandarisasi yang direkayasa sebelumnya yang dapat dengan mudah dikonfigurasi dan dipindahkan sesuai kebutuhan.

Data center modular dapat terdiri dari peralatan data center yang terdapat di dalam kontainer pengiriman atau kontainer portabel serupa. Tetapi juga dapat digambarkan sebagai gaya desain di mana komponen data center dibuat sebelumnya dan distandarisasi sehingga dapat dibangun, dipindahkan, atau ditambahkan secepat perubahan kebutuhan.

Environmental control

Physical environment data center dikontrol dengan ketat.

Air conditioning digunakan untuk mengontrol suhu dan kelembaban di pusat data. "Thermal Guidelines for Data Processing Environments" ASHRAE merekomendasikan kisaran suhu 18-27C, kisaran titik embun -9 s/d 15C, dan kelembapan relatif ideal 60%, dengan kisaran yang diperbolehkan antara 40% hingga 60% untuk lingkungan data center. Suhu di v secara alami akan naik karena daya listrik yang digunakan untuk memanaskan udara. Kecuali jika panas dihilangkan, suhu sekitar akan naik, yang mengakibatkan kegagalan fungsi peralatan elektronik. Dengan mengontrol suhu udara, komponen server di motherboard dalam rentang suhu/kelembaban yang ditentukan pabrikan. Sistem pendingin udara membantu mengontrol kelembaban dengan mendinginkan udara ruang balik di bawah titik embun. Terlalu banyak kelembapan, dan air mungkin mulai mengembun pada komponen internal. Dalam kasus atmosfer kering, sistem pelembapan tambahan dapat menambahkan uap air jika kelembapan terlalu rendah, yang dapat menyebabkan masalah pelepasan muatan listrik statis yang dapat merusak komponen. Data center bawah tanah dapat menjaga peralatan komputer tetap dingin sambil mengeluarkan lebih sedikit energi daripada desain konvensional.

Data center modern mencoba menggunakan pendingin economizer, di mana mereka menggunakan udara luar agar data center tetap dingin. Setidaknya satu data center (terletak di Upstate New York) akan mendinginkan server menggunakan udara luar selama musim dingin. Mereka tidak menggunakan pendingin/AC, yang menciptakan potensi penghematan energi hingga jutaan. Pendinginan udara tidak langsung semakin banyak digunakan di pusat data secara global yang memiliki keunggulan pendinginan yang lebih efisien yang menurunkan biaya konsumsi daya di pusat data. Banyak data center yang baru dibangun juga menggunakan unit Indirect Evaporative Cooling (IDEC) serta fitur lingkungan lainnya seperti air laut untuk meminimalkan jumlah energi yang dibutuhkan untuk mendinginkan ruangan.

Telcordia NEBS: Raised Floor Generic Requirements for Network and Data Centers, GR-2930 menyajikan persyaratan teknik umum untuk lantai yang dinaikkan yang termasuk dalam pedoman NEBS yang ketat.

Ada banyak jenis lantai yang tersedia secara komersial yang menawarkan berbagai kekuatan struktural dan kemampuan pemuatan, tergantung pada konstruksi komponen dan bahan yang digunakan. Jenis umum raised floor termasuk platform stringer, stringerless, dan struktural, yang semuanya dibahas secara rinci di GR-2930 dan dirangkum di bawah ini.

  • Stringered raised floor - Jenis lantai ditinggikan ini umumnya terdiri dari susunan vertikal rakitan alas baja (setiap rakitan terdiri dari pelat dasar baja, tubular tegak, dan kepala) secara seragam ditempatkan pada pusat dua kaki dan secara mekanis diikat ke lantai beton. Kepala tumpuan baja memiliki tiang yang dimasukkan ke dalam tumpuan tegak dan ketinggian keseluruhan dapat disesuaikan dengan mur perata pada tiang yang dilas pada kepala tumpuan.
  • Stringerless raised floor - Salah satu jenis lantai peninggian non-gempa umumnya terdiri dari susunan tumpuan yang memberikan ketinggian yang diperlukan untuk merutekan kabel dan juga berfungsi untuk menopang setiap sudut panel lantai. Dengan jenis lantai ini, mungkin ada atau tidak ada perlengkapan untuk mengencangkan panel lantai secara mekanis ke tumpuan. Jenis sistem tanpa senar ini (tidak memiliki keterikatan mekanis antara kepala tumpuan) memberikan aksesibilitas maksimum ke ruang di bawah lantai. Namun, lantai tanpa senar secara signifikan lebih lemah daripada lantai yang ditinggikan dengan senar dalam mendukung beban lateral dan tidak direkomendasikan.
  • Structural platform - Salah satu jenis platform struktural terdiri dari anggota yang dibangun dari sudut baja atau saluran yang dilas atau dibaut bersama untuk membentuk platform terintegrasi untuk peralatan pendukung. Desain ini memungkinkan peralatan untuk diikat langsung ke platform tanpa perlu toggle bar atau penguat tambahan. Platform struktural mungkin atau mungkin tidak berisi panel atau stringer.

Data Center biasanya memiliki raised floor yang terdiri dari 60 cm ubin persegi yang dapat dilepas. Tren menuju 80-100 cm void untuk memenuhi distribusi udara yang lebih baik dan seragam. Ini menyediakan pleno untuk sirkulasi udara di bawah lantai, sebagai bagian dari sistem pendingin udara, serta menyediakan ruang untuk pemasangan kabel daya.

Kumis logam

Raised Floor dan struktur logam lainnya seperti cable tray dan ventilation duct telah menyebabkan banyak masalah dengan kumis seng di masa lalu, dan sepertinya masih ada di banyak data center. Ini terjadi ketika filamen logam mikroskopis terbentuk pada logam seperti seng atau timah yang melindungi banyak struktur logam dan komponen elektronik dari korosi. Perawatan di lantai yang ditinggikan atau pemasangan kabel dll. dapat melepaskan kumis, yang masuk ke aliran udara dan dapat menyebabkan korsleting komponen server atau catu daya, terkadang melalui uap logam berarus tinggi busur plasma. Fenomena ini tidak unik untuk data center, dan juga menyebabkan kegagalan besar pada satelit dan perangkat keras militer.

Electrical power

Backup power terdiri dari satu atau lebih uninterruptible power supply, batere, dan/atau generator solar / turbin gas.

Untuk mencegah single point of failure, semua elemen sistem kelistrikan, termasuk sistem cadangan, biasanya digandakan sepenuhnya, dan server penting dihubungkan ke "A-side" dan "B-side" umpan listrik. Pengaturan ini sering dibuat untuk mencapai N+1 redundansi dalam sistem. Sakelar transfer statis terkadang digunakan untuk memastikan peralihan seketika dari satu suplai ke suplai lainnya jika terjadi kegagalan listrik.

Low-voltage cable routing

Pengkabelan data biasanya dirutekan melalui overhead cable tray di data center modern. Namun beberapa orang masih merekomendasikan pemasangan kabel di bawah lantai untuk alasan keamanan dan untuk mempertimbangkan penambahan sistem pendingin di atas rak jika peningkatan ini diperlukan. Data Center yang lebih kecil/lebih murah tanpa lantai yang ditinggikan dapat menggunakan ubin antistatis untuk permukaan lantai. Lemari komputer sering diatur menjadi pengaturan hot aisle untuk memaksimalkan efisiensi aliran udara.

Perlindungan kebakaran

Data Center mempunyai sistem proteksi kebakaran, termasuk elemen pasif dan Desain Aktif, serta penerapan program pencegahan kebakaran dalam operasi. Detektor asap biasanya dipasang untuk memberikan peringatan dini akan adanya kebakaran pada tahap awal. Hal ini memungkinkan penyelidikan, pemutusan aliran listrik, dan pemadaman api manual menggunakan alat pemadam api genggam sebelum api membesar menjadi ukuran besar. Sistem proteksi kebakaran aktif, seperti sistem gas pencegah kebakaran fire sprinkler system atau clean agent, sering disediakan untuk mengendalikan api skala penuh jika berkembang. Detektor asap sensitivitas tinggi, seperti detektor asap aspirating, mengaktifkan clean agent sistem gas pencegah kebakaran aktif lebih awal daripada penyiram api.

  • Sprinkler = perlindungan struktur dan keselamatan hidup bangunan.
  • Clean agent = kelangsungan bisnis dan perlindungan aset.
  • No water = tidak ada jaminan kerusakan atau pembersihan.

Elemen proteksi kebakaran pasif mencakup pemasangan Firewall di sekitar data center, sehingga api dapat dibatasi ke sebagian fasilitas untuk waktu yang terbatas jika terjadi kegagalan kebakaran aktif sistem perlindungan. Penetrasi dinding api ke ruang server, seperti penetrasi kabel, penetrasi saluran cairan pendingin, dan saluran udara, harus dilengkapi dengan rakitan penetrasi tahan api, seperti fire stopping.

Keamanan

Keamanan fisik juga memainkan peran besar dengan data center. Akses fisik ke lokasi biasanya dibatasi untuk personel tertentu, dengan kontrol termasuk sistem keamanan berlapis yang sering dimulai dengan pagar, bollard dan mantrap (kontrol akses). Kamera video pengawasan dan penjaga keamanan permanen hampir selalu ada pada data center besar atau berisi informasi sensitif pada salah satu sistem di dalamnya. Penggunaan finger print recognition mantrap (snare) mulai menjadi hal yang lumrah.

Mendokumentasikan akses diperlukan oleh beberapa peraturan perlindungan data. Untuk melakukannya, beberapa organisasi menggunakan sistem kontrol akses yang menyediakan laporan pencatatan akses. Pencataan dapat terjadi di pintu masuk utama, di pintu masuk ke ruang mekanik dan ruang putih, serta di lemari peralatan. Kontrol akses modern pada kabinet memungkinkan integrasi dengan unit distribusi daya yang cerdas sehingga kunci dapat diberi daya dan dihubungkan ke jaringan melalui alat yang sama.

Penggunaan Energi

Penggunaan energi adalah isu sentral untuk data center. Penarikan daya untuk data center berkisar dari beberapa kW untuk rak server dalam lemari hingga beberapa puluh MW untuk fasilitas besar. Beberapa fasilitas memiliki kerapatan daya lebih dari 100 kali lipat dari gedung perkantoran pada umumnya. Untuk fasilitas dengan kepadatan daya yang lebih tinggi, biaya listrik merupakan biaya operasional yang dominan dan mencapai lebih dari 10% dari total cost of ownership (TCO) pusat data. Pada tahun 2012, biaya daya untuk data center diperkirakan melebihi biaya investasi modal awal.

Menurut studi Greenpeace, pada tahun 2012, pusat data center mewakili 21% listrik yang dikonsumsi oleh sektor TI, yaitu sekitar 382 miliar kWh per tahun. Data Center AS menggunakan lebih dari 90 miliar kWh listrik per tahun. Data Center global menggunakan sekitar 416 TWh pada tahun 2016, hampir 40% lebih banyak daripada seluruh Inggris Raya.

Emisi gas rumah kaca

Pada tahun 2007, seluruh teknologi informasi dan komunikasi atau sektor TIK diperkirakan bertanggung jawab atas sekitar 2% dari carbon emissions global dengan pusat data terhitung 14% dari jejak TIK. untuk tahun 2007. Mengingat skenario bisnis seperti biasa, emisi gas rumah kaca dari data center diproyeksikan menjadi lebih dari dua kali lipat dari tingkat tahun 2007 pada tahun 2020.

Penempatan adalah salah satu faktor yang mempengaruhi konsumsi energi dan efek lingkungan dari data center. Di daerah di mana iklim mendukung pendinginan dan tersedia banyak listrik terbarukan, dampak lingkungan akan lebih moderat. Jadi negara-negara dengan kondisi yang menguntungkan, seperti: Kanada, Finlandia, Swedia, Norwegia, dan Swiss, mencoba menarik cloud computing data center.

Dalam penyelidikan selama 18 bulan oleh para sarjana di Baker Institute for Public Policy di Rice University di Houston dan Institute for Sustainable and Applied Infodynamics di Singapura, emisi terkait data center akan meningkat lebih dari tiga kali lipat pada tahun 2020.

Efisiensi energi

Metrik yang paling umum digunakan untuk menentukan efisiensi energi data center adalah power usage effectiveness, atau PUE. Rasio sederhana ini adalah total daya yang masuk ke pusat data dibagi dengan daya yang digunakan oleh peralatan TI.

PUE = Total Facility Power / IT Equipment Power

Total facility power terdiri dari daya yang digunakan oleh peralatan TI ditambah daya overhead yang dikonsumsi oleh apa pun yang tidak dianggap sebagai perangkat komputasi atau komunikasi data (yaitu pendinginan, penerangan, dll.). PUE yang ideal adalah 1.0 untuk situasi hipotetis dari daya overhead nol. Data Center rata-rata di AS memiliki PUE 2,0 yang berarti bahwa fasilitas menggunakan daya total dua watt (overhead + peralatan IT) untuk setiap watt yang dikirimkan ke peralatan IT. Efisiensi energi data center canggih diperkirakan sekitar 1,2. Beberapa operator data center besar seperti Microsoft dan Yahoo! telah menerbitkan proyeksi PUE untuk fasilitas yang sedang dikembangkan; Google memublikasikan kinerja efisiensi aktual triwulanan dari data center yang beroperasi.

Amerika Serikat. Badan Perlindungan Lingkungan]] memiliki peringkat Energy Star untuk pusat data mandiri atau besar. Agar memenuhi syarat untuk ekolabel, pusat data harus berada dalam kuartil teratas efisiensi energi dari semua fasilitas yang dilaporkan. Amerika Serikat mengesahkan Undang-Undang Peningkatan Efisiensi Energi tahun 2015, yang mewajibkan fasilitas federal — termasuk data center — untuk beroperasi lebih efisien. Pada tahun 2014, California memberlakukan California Energy Code title 24 dari Kode Peraturan California, yang mengamanatkan bahwa setiap data center yang baru dibangun harus memiliki beberapa bentuk penahanan aliran udara, sebagai langkah untuk mengoptimalkan efisiensi energi.

Uni Eropa juga memiliki inisiatif serupa: EU Code of Conduct for Data Centres

Analisis penggunaan energi

Seringkali, langkah pertama untuk membatasi penggunaan energi di data center adalah dengan memahami bagaimana energi digunakan di data center. Ada beberapa jenis analisis untuk mengukur penggunaan energi data center. Aspek yang diukur tidak hanya mencakup energi yang digunakan oleh peralatan IT itu sendiri, tetapi juga oleh peralatan fasilitas data center, seperti pendingin dan kipas.

Analisis daya dan pendinginan

Daya adalah biaya berulang terbesar bagi pengguna data center. Analisis daya dan pendinginan, juga disebut sebagai penilaian termal, mengukur suhu relatif di area tertentu serta kapasitas sistem pendingin untuk menangani suhu lingkungan tertentu. Analisis daya dan pendinginan dapat membantu mengidentifikasi hot spot, area yang terlalu dingin yang dapat menangani kerapatan penggunaan daya yang lebih besar, breakpoint pemuatan peralatan, efektivitas strategi lantai yang dinaikkan, dan pemosisian peralatan yang optimal (seperti unit AC) untuk menyeimbangkan suhu di data center. Kepadatan pendinginan daya adalah ukuran berapa banyak luas persegi yang dapat didinginkan pusat pada kapasitas maksimum. Pendinginan data center adalah konsumen daya terbesar kedua setelah server. Energi pendinginan bervariasi dari 10% dari total konsumsi energi di data center paling efisien dan naik hingga 45% di standard air-cooled data center.

Analisis efisiensi energi

Analisis efisiensi energi mengukur penggunaan energi TI data center dan peralatan fasilitas. Analisis efisiensi energi tipikal mengukur faktor-faktor seperti power use effectiveness (PUE) data center terhadap standar industri, mengidentifikasi sumber ketidakefisienan mekanis dan elektrik, dan mengidentifikasi metrik manajemen udara. Namun, batasan dari sebagian besar metrik dan pendekatan saat ini adalah bahwa mereka tidak menyertakan TI dalam analisis. Studi kasus telah menunjukkan bahwa dengan menangani efisiensi energi secara holistik di data center, efisiensi besar dapat dicapai yang tidak mungkin dilakukan dengan cara lain.

Analisis dinamika fluida komputasi (CFD)

Jenis analisis ini menggunakan alat dan teknik canggih untuk memahami kondisi termal unik yang ada di setiap pusat data center—predicting suhu, aliran udara, dan perilaku tekanan data center untuk menilai kinerja dan konsumsi energi, menggunakan pemodelan numerik. Dengan memprediksi efek dari kondisi lingkungan ini, analisis CFD di data center dapat digunakan untuk memprediksi dampak rak dengan kepadatan tinggi yang dicampur dengan rak dengan kepadatan rendah dan dampak selanjutnya pada sumber pendinginan, praktik manajemen infrastruktur yang buruk, dan kegagalan AC atau AC shutdown untuk pemeliharaan terjadwal.

Pemetaan zona termal

Pemetaan zona termal menggunakan sensor dan pemodelan komputer untuk membuat gambar tiga dimensi zona panas dan dingin di data center. Informasi ini dapat membantu mengidentifikasi posisi optimal peralatan data center. Misalnya, server kritis mungkin ditempatkan di zona sejuk yang dilayani oleh unit AC redundan.

Data Center ramah lingkungan

Data Center menggunakan banyak daya, dikonsumsi oleh dua penggunaan utama: daya yang diperlukan untuk menjalankan peralatan sebenarnya dan kemudian daya yang diperlukan untuk mendinginkan peralatan. Kategori pertama ditangani dengan merancang komputer dan sistem penyimpanan yang semakin hemat daya. Untuk menurunkan biaya pendinginan, perancang pusat data mencoba menggunakan cara alami untuk mendinginkan peralatan. Banyak data center terletak di dekat konektivitas serat yang baik, koneksi jaringan listrik, dan juga pusat konsentrasi orang untuk mengelola peralatan, tetapi ada juga keadaan di mana data center berada ratusan kilometer jauhnya dari pengguna dan tidak memerlukan banyak manajemen lokal. Contohnya adalah pusat data 'massal' seperti Google atau Facebook: DC ini dibangun di sekitar banyak server standar dan storage array dan pengguna sebenarnya dari sistem ini berlokasi di seluruh dunia. Setelah pembangunan awal data center, jumlah staf yang diperlukan agar tetap berjalan seringkali relatif rendah: terutama data center yang menyediakan penyimpanan massal atau daya komputasi yang tidak perlu berada di dekat pusat populasi. Data Center di lokasi Arktik dengan udara luar menyediakan semua pendinginan semakin populer karena pendinginan dan listrik adalah dua komponen biaya variabel utama.

Penggunaan kembali energi

Praktik pendinginan data center menjadi topik diskusi. Sangat sulit untuk menggunakan kembali panas yang berasal dari pusat data berpendingin udara. Untuk itu, infrastruktur data center lebih sering dilengkapi dengan pompa panas. Alternatif untuk pompa panas adalah adopsi pendinginan cair di seluruh pusat data. Berbagai teknik pendinginan cairan dicampur dan disesuaikan untuk memungkinkan infrastruktur berpendingin cairan sepenuhnya yang menangkap semua panas dalam air. Teknologi cairan yang berbeda dikategorikan dalam 3 kelompok utama, Pendinginan cairan tidak langsung (rak berpendingin air), Pendinginan cairan langsung (pendinginan langsung ke chip) dan Pendinginan cairan total (pencelupan total dalam cairan). Kombinasi teknologi ini memungkinkan pembuatan thermal cascade sebagai bagian dari skenario temperature chaining untuk membuat output air bersuhu tinggi dari data center.

Infrastruktur jaringan

Komunikasi di data center saat ini paling sering didasarkan pada jaringan komputer yang menjalankan rangkaian IP protocol. Data Center berisi kumpulan Router dan Switch yang mengangkut lalu lintas antara server dan ke dunia luar yang terhubung sesuai dengan data center network architecture. Redundansi koneksi Internet sering disediakan dengan menggunakan dua atau lebih penyedia layanan upstream (lihat Multihoming).

Beberapa server di data center digunakan untuk menjalankan layanan dasar Internet dan intranet yang dibutuhkan oleh pengguna internal dalam organisasi, misalnya, server email, server proxy, dan DNS server.

Elemen keamanan jaringan juga biasanya digunakan: Firewall, VPN Gateway, Intrusion Detection System, dll. Yang juga umum adalah sistem pemantauan untuk jaringan dan beberapa aplikasi. Sistem pemantauan di luar lokasi tambahan juga tipikal, jika terjadi kegagalan komunikasi di dalam pusat data.

Data center infrastructure management

Data center infrastructure management (DCIM) adalah integrasi teknologi informasi (TI) dan disiplin manajemen fasilitas untuk memusatkan pemantauan, manajemen, dan perencanaan kapasitas cerdas dari sistem data center kritis. Dicapai melalui penerapan perangkat lunak, perangkat keras, dan sensor khusus, DCIM memungkinkan platform pemantauan dan manajemen bersama yang real-time untuk semua sistem yang saling bergantung di seluruh TI dan infrastruktur fasilitas.

Tergantung pada jenis penerapannya, produk DCIM dapat membantu manajer data center mengidentifikasi dan menghilangkan sumber risiko untuk meningkatkan ketersediaan sistem TI yang penting. Produk DCIM juga dapat digunakan untuk mengidentifikasi interdependensi antara fasilitas dan infrastruktur TI untuk mengingatkan manajer fasilitas akan kesenjangan redundansi sistem, dan memberikan tolok ukur yang dinamis dan holistik pada konsumsi daya dan efisiensi untuk mengukur efektivitas inisiatif "green TI".

Penting untuk mengukur dan memahami metrik efisiensi data center. Banyak diskusi di bidang ini berfokus pada masalah energi, tetapi metrik lain di luar PUE dapat memberikan gambaran yang lebih detail tentang operasi data center. Metrik penggunaan server, penyimpanan, dan staf dapat berkontribusi pada tampilan data center perusahaan yang lebih lengkap. Dalam banyak kasus, kapasitas disk tidak terpakai dan dalam banyak kasus organisasi menjalankan server mereka dengan penggunaan 20% atau kurang. Alat otomatisasi yang lebih efektif juga dapat meningkatkan jumlah server atau mesin virtual yang dapat ditangani oleh satu admin.

Penyedia DCIM semakin terhubung dengan computational fluid dynamics penyedia untuk memprediksi pola aliran udara yang kompleks di pusat data. Komponen CFD diperlukan untuk mengukur dampak dari perubahan yang direncanakan di masa mendatang pada ketahanan, kapasitas, dan efisiensi pendinginan.

Mengelola kapasitas pusat data

Beberapa parameter dapat membatasi kapasitas data center. Untuk penggunaan jangka panjang, batasan utamanya adalah area yang tersedia, lalu daya yang tersedia. Pada tahap pertama siklus hidupnya, data center akan melihat ruang yang ditempati tumbuh lebih cepat daripada energi yang dikonsumsi. Dengan pemadatan konstan teknologi IT baru, kebutuhan energi akan menjadi dominan, menyamai kemudian mengatasi kebutuhan di daerah (siklus fase kedua kemudian ketiga). Perkembangan dan penggandaan objek yang terkoneksi, kebutuhan akan penyimpanan dan pengolahan data menyebabkan kebutuhan data center semakin berkembang pesat. Oleh karena itu penting untuk menentukan strategi data center sebelum terpojok. Keputusan, konsepsi, dan siklus pembangunan berlangsung beberapa tahun. Oleh karena itu, sangat penting untuk memulai pertimbangan strategis ini ketika pusat data mencapai sekitar 50% dari kapasitas dayanya. Penggunaan maksimum pusat data perlu distabilkan sekitar 85%, baik dalam daya atau area yang ditempati. Sumber daya yang dikelola dengan demikian akan memungkinkan zona rotasi untuk mengelola penggantian perangkat keras dan akan memungkinkan kohabitasi sementara generasi lama dan baru. Dalam kasus di mana batas ini akan dilampaui secara terus-menerus, tidak mungkin untuk melanjutkan ke penggantian material, yang akan selalu menyebabkan sistem informasi tercekik. Pusat data adalah sumber daya dalam sistem informasinya sendiri, dengan batasan waktu dan manajemennya sendiri (masa hidup 25 tahun), oleh karena itu perlu dipertimbangkan dalam kerangka perencanaan jangka menengah SI (antara 3 dan 5 tahun).

Aplikasi

Tujuan utama data center adalah menjalankan aplikasi sistem TI yang menangani bisnis inti dan data operasional organisasi. Sistem tersebut mungkin merupakan hak milik dan dikembangkan secara internal oleh organisasi, atau dibeli dari perangkat lunak perusahaan vendor. Aplikasi umum tersebut adalah sistem ERP dan CRM.

Data Center mungkin hanya peduli dengan arsitektur operasi atau mungkin menyediakan layanan lain juga.

Seringkali aplikasi ini terdiri dari banyak host, masing-masing menjalankan satu komponen. Komponen umum dari aplikasi tersebut adalah database, file server, application server, middleware, dan berbagai lainnya.

Data Center juga digunakan untuk off-site backup. Perusahaan dapat berlangganan layanan backup yang disediakan oleh data center. Ini sering digunakan bersamaan dengan backup tape. Backup dapat diambil dari server secara lokal ke kaset. Namun, kaset yang disimpan di lokasi menimbulkan ancaman keamanan dan juga rentan terhadap kebakaran dan banjir. Perusahaan yang lebih besar juga dapat mengirim backup mereka ke off-site untuk keamanan tambahan. Ini dapat dilakukan dengan membuat backup ke data center. Backup terenkripsi dapat dikirim melalui Internet ke data center lain untuk disimpan dengan aman.

Untuk penerapan cepat atau pemulihan bencana, beberapa vendor perangkat keras besar telah mengembangkan solusi seluler/modular yang dapat dipasang dan dioperasikan dalam waktu yang sangat singkat. Perusahaan seperti

US wholesale dan retail colocation provider

Menurut data yang diberikan pada kuartal ketiga tahun 2013 oleh Synergy Research Group, "skala pasar colocation grosir di Amerika Serikat relatif signifikan terhadap pasar ritel, dengan pendapatan grosir Q3 mencapai hampir $700 juta. Realty Digital Trust adalah pemimpin pasar grosir, diikuti dari jauh oleh DuPont Fabros." Synergy Research juga menggambarkan pasar colocation AS sebagai yang paling matang dan berkembang dengan baik di dunia, berdasarkan pendapatan dan adopsi berkelanjutan dari layanan infrastruktur cloud.

Estimasi dari data Q3 2013 Synergy Research Group.
Rank Company name US market share
1 Various providers 34%
2 Equinix 18%
3 CenturyLink-Savvis 8%
4 SunGard 5%
5 AT&T 5%
6 Verizon 5%
7 Telx 4%
8 CyrusOne 4%
9 Level 3 Communications 3%
10 Internap 2%

Pranala Menarik