Difference between revisions of "Pembangkit Daya Surya"

From OnnoWiki
Jump to navigation Jump to search
(New page: 8 Membangun sebuah Titik Luar Ruang Ada banyak pertimbangan praktis ketika memasang peralatan elektronik di lua...)
 
Line 1: Line 1:
                                                                        8
+
7
Membangun sebuah Titik Luar Ruang
+
Pembangkit daya surya
 +
(Solar Power)
  
 +
Bab ini memperkenalkan komponen dari photovoltaic sistem yang mandiri (stand-alone photovoltaic system). Kata mandiri merujuk pada kenyataan bahwa sistem tersebut berfungsi tanpa ada sambungan jaringan daya manapun yang sudah ada. Di bab ini, kami akan memberikan konsep dasar pembangkitan dan penyimpanan daya surya photovoltaic. Kami juga akan menyediakan metode untuk mendesain sistem surya fungsionil dengan akses terbatas terhadap informasi dan sumber daya.
  
Ada banyak pertimbangan praktis ketika memasang peralatan elektronik di luar ruangan. Secara nyata, peralatan tersebut harus terlindungi dari hujan, angin, matahari, dan elemen berbahaya lainnya. Daya harus disediakan, dan antena harus dipasang cukup tinggi. Tanpa penyambungan ke tanah yang baik, petir yang dekat, daya yang berfluktuasi, dan bahkan angin yang ringan walaupun dalam keadaan cuaca normal dapat menghancurkan sambungan nirkabel anda. Bab ini akan memberikan anda gagasan mengenai masalah-masalah praktis yang akan anda hadapi ketika memasang peralatan nirkabel luar ruang.  
+
Bab ini hanya membicarakan penggunaan daya surya untuk produksi langsung listrik (energi surya photovoltaic atau solar energy photovoltaic). Daya surya juga bisa digunakan untuk memanaskan cairan (energi panas surya atau thermal solar energy) yang kemudian dapat digunakan sebagai sumber panas atau untuk memutar turbin untuk membangkitkan listrik. Sistem daya surya termal diluar pembahasan bab ini.  
  
Penutup kedap air
 
  
Penutup kedap air tersedia dalam berbagai banyak jenis. Logam atau plastik dapat digunakan untuk membuat sebuah kontainer kedap air untuk peralatan luar ruang. Tentu saja, peralatan memerlukan daya agar dapat berkerja, dan sepertinya harus terhubung dengan antena dan kabel Ethernet. Setiap kali anda melubangi penutup kedap air, anda menciptakan potensi masuknya air ke dalam peralatan tersebut.
+
Energi surya
  
Asosasi Pengusaha Pabrik Listrik Nasional atau National Electrical Manufacturers Association (NEMA) menyediakan petunjuk untuk perlindungan peralatan listrik dari hujan, es, debu, dan kontaminan lainnya. Sebuah penutup dengan penilaian NEMA 3 atau lebih baik cocok untuk penggunaan luar ruang dalam kondisi iklim yang cukup baik. Sebuah NEMA 4X atau NEMA 6 memberikan perlindungan yang sempurna, bahkan dari semprotan air selang dan es. Untuk sesuatu yang permanen yang melubangi tubuh penutup (seperti kabel gland dan konektor berkepala besar), Komisi Teknik-eletronika Internasional atau International Electrotechnical Comission (IEC) memberikan penilaian perlindungan penetrasi (ingress).  
+
Sistem Photovoltaic berbasis pada kemampuan bahan tertentu untuk mengubah energi cahaya matahari menjadi daya listrik. Jumlah daya surya yang menyalakan suatu area tertentu diketahui sebagai penyinaran atau irradiance (G) dan diukur dalam watt per meter persegi (W/m2). Nilai seketika itu  biasanya dirata-rata dalam suatu periode waktu, sehingga biasa disebut total penyinaran per jam, hari atau bulan.  
  
Sebuah penilaian perlindungan penetrasi IP66 atau IP67 akan melindungi lubang-lubang ini dari semburan air yang sangat kuat. Sebuah penutup luar ruang yang baik juga harus menyediakan perlindungan UV untuk mencegah kehancuran penyekat dari kontak matahari, serta untuk melindungi peralatan yang ada di dalam.
+
Tentunya, jumlah radiasi yang akurat yang tiba di permukaan bumi tidak bisa diperkirakan dengan keakuratan yang tinggi, karena variasi cuaca alami. Oleh karena itu perlu untuk bekerja dengan data statistik berdasarkan "sejarah surya" pada suatu tempat. Data ini dikumpulkan oleh kantor pengamat cuaca dalam jangka waktu yang lama dan tersedia dari sejumlah sumber, berupa tabel atau database. Di kebanyakan kasus, bisa sulit menemukan informasi terperinci mengenai suatu daerah tertentu, dan anda harus bekerja dengan nilai perkiraan.  
  
Tentunya, mencari penutup berperingkat NEMA atau IEC bisa akan sangat sulit di daerah lokal anda. Sering kali, bagian-bagian yang tersedia secara lokal dapat didaur ulang untuk digunakan sebagai penutup. Plastik kasar atau kotak logam penyembur air, kotak saluran listrik, atau bahkan kontainer makanan plastik dapat digunakan jika memang diperlukan. Ketika melubangi penutup, gunakan cincin karet atau o-ring yang berkualitas bersamaan dengan kabel gland untuk menyekat bagian yang terbuka. Salep silikon yang stabil terhadap UV atau penyekat lainnya dapat digunakan untuk instalasi sementara, namun ingatlah bahwa kabel melentur dalam angin, dan sendi-sendi yang dilem akhirnya akan melemah dan menyebabkan embun untuk merembes masuk.    
+
Beberapa organisasi sudah menghasilkan peta yang meliputi nilai rata-rata penyinaran global sehari-hari untuk daerah yang berbeda. Nilai ini diketahui sebagai Waktu Puncak Matahari atau Peak Sun Hours atau PSH. Anda bisa mempergunakan nilai PSH untuk daerah anda untuk menyederhanakan perhitungan anda. Satu kesatuan "tertinggi matahari" berhubungan dengan radiasi sebanyak 1000 Watt semeter persegi. Jika kita menemukan daerah tertentu itu mempunyai 4 PSH yang terburuk di antara bulan-bulan, itu berarti bahwa pada bulan itu kita sebaiknya tidak mengharapkan penyinaran harian lebih besar daripada 4000 W/m2 (hari). Penggunaan waktu matahari tertinggi adalah cara mudah untuk melambangkan rata-rata kasus penyinaran sehari yang paling buruk.
  
Anda dapat memperpanjang umur penutup plastik dengan menyediakan suatu perlindungan dari matahari. Meletakan kotak di tempat teduh, baik di bawah peralatan yang ada, panel solar, atau lembaran tipis logam yang diperuntukan untuk tujuan ini, akan memperpanjang umur kotak serta peralatan yang tersimpan di dalamnya.  
+
Peta PSH beresolusi rendah tersedia dari sejumlah sumber online, seperti http://www.solar4power.com/solar-power-global-maps.html. Untuk informasi yang lebih terperinci, konsultasikan dengan vendor lokal energi surya atau pengamat cuaca lokal.  
  
Sebelum meletakan bagian eletronika apapun ke dalam kotak yang disekat, pastikan adanya keperluan pembuangan panas yang minimal. Jika motherboard anda memerlukan sebuah fan atau pembuangan panas yang besar, ingatlah bahwa tidak akan ada aliran udara, dan peralatan eletronika anda akan terpanggang hingga tidak berfungsi pada menara. Hanya gunakan komponen eletronika yang di desain untuk digunakan dalam lingkungan tertutup. 
 
  
Menyediakan daya
+
Bagaimana dengan daya angin?
  
Secara nyata, daya DC dapat disediakan dengan secara sederhana melubangi penutup anda dan memasukan kabel. Jika penutup anda cukup besar (katakanlah, sebuah kotak listrik luar ruang) anda bahkan dapat menyambungkan outlet AC di dalam kotak. Saat ini pabrik mulai semakin mendukung fitur yang sangat membantu untuk menghilangkan lubang tambahan di kotak dengan menggunakan: Daya melalui Ethernet atau Power over Ethernet (POE).  
+
Adalah mungkin untuk menggunakan pembangkit listrik daya angin sebagai pengganti panel surya ketika sistem mandiri sedang didesain untuk instalasi di bukit atau gunung. Untuk menjadi efektif, kecepatan angin rata-rata dalam setahun sebaiknya sedikitnya 3 sampai 4 meter per detik, dan pembangkit listrik daya angin sebaiknya 6 meter lebih tinggi daripada benda lain dalam jarak 100 meter. Lokasi yang jauh dari pantai biasanya kurang cukup daya angin untuk mendukung sistem berdaya angin.
  
Standar 802.3af mendefinisikan sebuah metode untuk menyediakan daya ke alat yang menggunakan pasangan kabel yang tak terpakai pada kabel Ethernet standar. Daya hampir sebanyak 13 Watt dapat disediakan secara aman pada kabel CAT5 tanpa mengganggu pengiriman data melalui kawat yang sama. Switch Ethernet yang sesuai dengan 802.3af yang lebih baru (dinamakan penyuntik jengkal akhir atau end span injectors) menyediakan daya secara langsung ke alat yang dihubungkan. Switch dengan penyuntik jengkal akhir dapat menyediakan daya pada kawat yang sama yang dipakai untuk data (pasangan 1- 2 dan 3-6) atau pada kawat yang tak terpakai (pasangan 4-5 dan 7-8). Peralatan lain, dinamakan penyuntik jengkal tengah, dimasukkan antara switch Ethernet dan alat yang dihidupkan. Penyuntik ini menyediakan daya pada pasangan kabel yang tak terpakai.  
+
Secara umum, sistem photovoltaic lebih dapat diandalkan daripada pembangkit listrik daya angin, karena sinar matahari lebih tersedia daripada angin yang konsisten di kebanyakan tempat. Di sisi lain, pembangkit listrik berdaya angin dapat meng-charge baterai bahkan pada malam hari, selama ada angin yang cukup. Tentu saja mungkin untuk menggunakan angin bersama daya surya untuk membantu pada saat ada keadaan yang berawan, atau pada saat angin tidak cukup.
  
Jika router nirkabel anda atau CPE termasuk dukungan untuk 802.3af, anda secara teoritis dapat secara langsung menghubungkannya ke penyuntik. Sayangnya, beberapa pabrik (khususnya Cisco) memiliki polaritas daya yang tidak sama, dan menghubungkannya dapat merusak penyuntik dan peralatan yang ingin dihidupkan. Bacalah petunjuk yang ada dan pastikan bahwa penyuntik dan peralatan nirkabel anda sesuai dengan pin dan polaritas yang dapat digunakan untuk daya.
+
Untuk kebanyakan lokasi, biaya pembangkit listrik daya angin yang baik tidak dijustifikasi dengan sedikitnya daya yang ditambahkannya ke keseluruhan sistem. Bab ini maka akan fokus pada penggunaan panel surya untuk membangkitkan listrik.  
  
Jika peralatan nirkabel anda tidak menyangga daya melalui Ethernet, anda masih dapat menggunakan pasangan yang tak terpakai dalam kabel CAT5 untuk meneruskan daya. Anda dapat menggunakan baik penyuntik POE pasif (passive POE injector) atau secara sederhana membuat satu sendiri. Alat-alat ini secara manual menghubungkan daya DC ke kawat yang tak terpakai pada satu akhir kabel, dan menghubungkan akhir yang lain secara langsung ke konektor barrel yang dimasukkan ke dalam mata daya alatnya. Pasangan alat POE pasif biasanya bisa dibeli di bawah $20.
 
  
Untuk membuat alat anda sendiri, anda perlu mengetahui seberapa banyak daya yang diperlukan alat tersebut agar dapat beroperasi dan menyediakan sedikitnya arus dan tegangan yang cukup, ditambah tegangan secukupnya untuk menutupi kehilangan pada berjalannya Ethernet. Anda tidak ingin menyediakan terlalu banyak daya, karena hambatan kabel kecil dapat menimbulkan bahaya api. Berikut ini adalah kalkulator online yang akan membantu anda memperhitungkan penurunan tegangan untuk sebuah CAT5: http://www.gweep.net/~sfoskett/tech/poecalc.html.
+
Komponen sistem Photovoltaic
  
Setelah anda mengetahui polaritas listrik dan daya yang pas yang dibutuhkan untuk menjalankan peralatan nirkabel anda, crimp-lah kabel CAT5 yang hanya menggunakan kawat data (pasangan 1-2 dan 3-6). Lalu secara mudah sambungkan transformer ke pasangan 4-5 (biasanya biru/ biru-keputihan) dan 7-8 (coklat/ coklat-keputihan) pada satu ujung, dan sebuah konektor barrel yang cocok pada ujung yang satunya.
+
Dasar sistem photovoltaic terdiri dari empat komponen utama: panel surya (solar panel), baterai (batteries), regulator, dan beban (load). Panel bertanggung jawab untuk mengumpulkan daya matahari dan membangkitkan listrik. Baterai menyimpan daya listrik untuk penggunaannya nanti. Regulator menjamin panel dan baterai bekerja sama dalam model optimal. Beban merujuk pada alat apapun yang memerlukan daya listrik, dan merupakan jumlah konsumsi listrik dari semua peralatan listrik yang dihubungkan dengan sistem. Penting untuk diingat bahwa panel surya dan baterai menggunakan arus searah atau direct current (DC).
  
Pertimbangan peletakan
+
Jika jangkauan tegangan operasional peralatan anda tidak cocok dengan tegangan yang disediakan oleh baterai anda, anda perlu menggunakan converter untuk menyesuaikan tegangan.  Jika peralatan anda menggunakan tegangan yang berbeda dengan tegangan baterai, anda perlu mengunakan konverter DC/DC (DC/DC converter). Jika sebagian dari peralatan anda memerlukan tegangan AC, maka anda perlu menggunakan konverter DC/AC (DC/AC converter), yang juga dikenal sebagai inverter.
  
Dalam banyak kasus, peralatan dapat diletakan di dalam gedung, dengan syarat ada jendela dengan kaca biasa yang bisa dilalui oleh cahaya. Kaca normal akan menyebabkan sedikit atenuasi, tetapi kaca berwarna akan menyebabkan atenuasi yang tidak dapat ditoleransikan. Ini sangat menyederhanakan permasalahan peletakan, daya, dan tahan cuaca, tetapi secara nyata hanya berguna di daerah yang didiami penduduk.  
+
Setiap sistem daya listrik sebaiknya memasukkan berbagai alat keamanan untuk mengantisipasi kekacauan. Alat ini meliputi perkabelan yang baik, sekering, proteksi perubahan tegangan (surge protector), sekering, pentanahan, penangkal petir, dll.  
  
Ketika meletakkan antena pada menara, sangat penting untuk menggunakan stand-off bracket (penopang siku yang dapat berdiri sendiri), dan tidak meletakkan antena secara langsung pada menara. Penopang siku ini membantu dengan banyak fungsi termasuk pemisahan antena, pemosisian antena dan perlindungan antena.
 
  
Stand-off bracket harus cukup kuat untuk menopang bobot antena, dan juga menjaga agar antena tetap pada letaknya ketika ada angin. Ingatlah, antena dapat beraksi seperti layar kecil, dan dapat menimbulkan gaya yang kuat pada sandaran mereka ketika ada angin kuat. Ketika memperkirakan hambatan angin, luas total permukaan struktur antena harus dipertimbangkan, serta jarak dari pusat antena sampai titik sambungan ke gedung. Antena besar seperti parabola utuh atau panel sektoral dengan gain yang tinggi dapat mempunyai beban angin yang cukup besar. Menggunakan sebuah parabola slotted atau mesh, daripada parabola utuh, akan membantu mengurangi beban angin tanpa banyak mempengaruhi gain antena. Pastikan bahwa siku-siku sandaran dan struktur pendukung terpasang secara kokoh, atau posisi/arah antena anda akan berubah seiring berjalannya waktu (atau lebih parah lagi, semuanya jatuh dari menara!)  
+
Panel surya (Solar Panel)
  
Bracket sandaran antenna harus cukup jauh dari tower untuk memudahkan pembidikan antenna, tapi tidak terlalu jauh sehingga antenna sukar untuk di jangkau jika dibutuhkan perbaikan atau pemeliharaan.  
+
Panel surya (solar panel) terdiri dari sel surya yang mengumpulkan radiasi surya dan mengubahnya menjadi daya listrik. Bagian sistem ini kadang-kadang dinamakan modul surya (solar module) atau pembangkit listrik daya photovoltaic (photovoltaic generator). Sekumpulan panel surya dapat dibuat dengan menyambung sekumpulan panel dalam serial dan/atau paralel untuk menyediakan daya yang diperlukan untuk beban yang ada. Arus listrik yang disediakan oleh panel surya bervariasi secara proporsional terhadap radiasi surya. Ini akan bervariasi menurut kondisi iklim, jam, dan waktu pada suatu tahun.  
  
 +
Gambar 7.1: Panel surya (Solar panel)
  
 +
Beberapa teknologi dapat digunakan dalam pembuatan sel surya. Yang paling banyak digunakan adalah kristal silicon, dan dapat berupa baik monocrystalline atau polycrystalline. Silikon amorphous (Amorphous silicon) bisa lebih murah tetapi lebih tidak efisien untuk mengubah daya surya ke listrik. Dengan waktu hidup yang berkurang dan efisiensi transformasi 6 sampai 8%, amorphous silicon biasanya digunakan untuk peralatan berdaya rendah, seperti kalkulator yang mudah dibawa. Teknologi surya baru, seperti silicon ribbon dan photovoltaics film tipis, sekarang ini dalam perkembangan. Teknologi ini menjanjikan efisiensi yang lebih tinggi tetapi belum tersedia secara luas.
  
Gambar 8.1: Sebuah antena dengan stand-off bracket
 
sedang diangkat ke atas menara
 
  
Pipa pada stand-off bracket dimana antena akan dipasang harus berbentuk silinder. Dengan cara ini, antena dapat diputar pada pipa untuk pembidikan. Kedua, pipa juga harus vertikal. Jika diletakkan pada menara yang meruncing, siku-siku tersebut harus didesain agar dapat bisa dipasang pada menara ini. Ini bisa dilakukan dengan memakai baja dengan panjang berbeda, atau dengan menggunakan kombinasi tangkai berulir dan pelat baja.
+
Baterai (Battery)
  
Karena peralatan tersebut akan berada diluar selama umur kegunaannya, adalah penting untuk memastikan bahwa baja yang digunakan tahan cuaca. Baja tahan karat seringkali terlalu mahal untuk instalasi menara. Penguatan yang sangat baik (Hot galvanizing) akan lebih baik, tetapi mungkin tidak tersedia di beberapa daerah. Pengecatan semua baja dengan cat anti-karat yang baik juga bisa. Jika menggunakan cat, maka penting untuk merencanakan pemeriksaan tahunan bracket dan melakukan pengecatan ulang jika perlu.
+
Baterai menyimpan daya yang dihasilkan oleh panel surya yang tidak segera digunakan oleh beban. Daya yang disimpan dapat digunakan saat periode radiasi matahari rendah. Komponen baterai kadang-kadang dinamakan akumulator (accumulator). Baterai menyimpan listrik dalam bentuk daya kimia. Baterai yang paling biasa digunakan dalam aplikasi surya adalah baterai yang bebas pemeliharaan bertimbal asam (maintenance-free lead-acid batteries), yang juga dinamakan baterai recombinant atau VRLA (klep pengatur asam timbal atau valve regulated lead acid).  
  
Guyed Tower (Menara dengan penyangga kabel)
 
  
Guyed Tower (menara dengan penyangga kabel) yang dapat dipanjat adalah pilihan sempurna untuk banyak instalasi, tetapi untuk struktur yang sangat tinggi, menara self-support yang menyanggah dirinya sendiri akan lebih baik.
 
  
Ketika memasang guyed tower, sebuah kerekan yang tersambung pada bagian atas tiang akan memudahkan instalasi menara. Tiang tersebut dipasangkan pada stek / bagian tower yang lebih rendah yang sudah ada di tempatnya, sementara kedua bagian / stek tower terhubung dengan sambungan sementara. Sebuah tali melalui kerekan akan memudahkan pengangkatan stek / bagian berikutnya. Setelah bagian penopang menjadi vertikal, bautkan penopang tersebut pada bagian lebih rendah tiang. Tiang dapat dipindahkan, dan instalasi stek tower dapat diulangi, jika diperlukan. Kencangkan kawat-kawat itu secara hati-hati, memastikan bahwa anda memberikan ketegangan yang sama di semua titik penancapan yang sesuai. Pilihlah titik agar sudut-sudut, seperti yang terlihat dari pusat menara, berada pada jarak yang sama.
+
Gambar 7.2: Sebuah baterai bertimbal asam Ah 200. Terminal negatif rusak karena berat pada terminal selama transportasi.
  
 +
Disamping menyimpan daya, baterai-baterai bertimbal asam yang disekat juga melayani dua fungsi penting:
  
 +
Mereka dapat menyediakan daya seketika yang lebih kuat dibandingkan dengan apa yang dihasilkan oleh sekumpulan panel. Daya seketika ini diperlukan untuk memulai beberapa peralatan, seperti mesin kulkas atau pompa.
 +
Mereka menentukan tegangan operasi instalasi anda
  
Gambar 8.2: menara dengan penyangga kabel yang dapat dipanjat
+
Untuk instalasi daya kecil dan dimana keterbatasan ruang penting, jenis baterai lainnya (seperti NiCd, NiMh, atau Li-ion) dapat digunakan. Baterai seperti ini memerlukan charger/regulator yang khusus dan tidak dapat secara langsung digunakan untuk menggantikan baterai bertimbal asam.
  
Menara self-support (swadaya)
+
 +
Pengatur (Regulator)
  
Menara self-support atau yang dapat menyanggah dirinya sendiri mahal tetapi kadang-kadang diperlukan, khususnya jika dibutuhkan ketinggian yang sangat tinggi. Ini bisa sebuah tiang yang berat yang tertanam dalam beton, atau serumit menara radio profesional.
+
Pengatur / Regulator (atau lebih formalnya pengatur penyimpanan daya surya atau Solar power charge regulator) memastikan bahwa baterai berkerja dalam kondisi yang seharusnya. Pengatur ini menghindari penyimpanan (charge) atau pengeluaran (discharge) baterai yang berlebihan, yang keduanya sangat merusak umur baterai. Untuk menjamin charging dan discharging baterai yang baik, pengatur tersebut menjaga informasi kondisi penyimpanan daya (State of Charge atau SoC) baterai. SoC diukur berdasarkan pada tegangan sebenarnya dari baterai. Dengan mengukur tegangan baterai dan diprogram dengan tipe teknologi penyimpanan yang digunakan oleh baterai, pengatur bisa mengetahui titik tepat di mana baterai akan mengalami charge atau discharge yang berlebihan.
  
 +
Gambar 7.3: Pengontrol penyimpanan daya surya 30 Ampere
  
 +
Pengatur dapat meliputi fitur lain yang menambahkan informasi berharga dan keamanan kontrol kepada peralatan. Fitur ini termasuk amperemeter, voltmeter, pengukuran ampere-jam, pengatur waktu, alaram, dll. Walaupun terkesan nyaman, tidak satupun dari fitur ini diperlukan untuk photovoltaic sistem yang berfungsi.
  
  
 +
Konverter (Converter)
  
 +
Listrik yang disediakan oleh sekumpulan panel dan baterai adalah DC pada tegangan yang tetap. Tegangan yang disediakan mungkin tidak sesuai dengan apa yang diperlukan oleh beban anda. Sebuah konverter DC/AC, yang juga dikenal sebagai inverter, mengubah arus DC dari baterai anda menjadi AC. Ini diikuti dengan kehilangan suatu daya selama konversi. Jika perlu, anda juga dapat menggunakan konverter untuk mendapatkan DC di tingkat tegangan yang berbeda dengan apa yang disediakan oleh baterai. Konverter DC/DC juga kehilangan suatu daya selama konversi. Untuk pelaksanaan optimal, anda sebaiknya mendesain sistem anda yang berdaya surya agar sesuai dengan tegangan DC yang dihasilkan agar sesuai dengan beban.
  
  
Gambar 8.3: menara self-support yang sederhana
+
Gambar 7.4: Sebuah konverter DC/AC 800 Watt (inverter daya)
  
Menara yang sudah ada kadang-kadang dapat digunakan, walaupun antena stasiun pemancar AM sebaiknya dihindari karena seluruh strukturnya aktif. Antena stasiun FM dapat diterima, dengan syarat ada jarak sedikitnya beberapa meter di antara antena. Perhatikan bahwa sementara antena pemancar yang berdampingan mungkin tidak mengganggu hubungan nirkabel anda, FM berdaya tinggi dapat mengganggu kabel Ethernet anda. Setiap kali menggunakan menara antena yang penuh dengan antena, cermatilah penghubungan ke tanah yang baik dan pertimbangkan penggunaan kabel yang terlindung.
+
Beban (Load)
  
 +
Beban adalah peralatan yang mengkonsumsi daya yang dihasilkan oleh sistem daya anda. Beban mungkin termasuk peralatan komunikasi nirkabel, router, meja bekerja, lampu, set TV, modem VSAT, dll. Walaupun tidak mungkin secara persis memperhitungkan jumlah persis konsumsi peralatan anda, sangat penting untuk membuat perkiraan yang baik. Dalam sistem sejenis ini, sangatlah penting untuk mempergunakan peralatan yang efisien dan berdaya rendah untuk menghindari daya yang terbuang.
  
  
Gambar 8.4: Sebuah menara yang sangat rumit
+
Menyatukan semua menjadi satu kesatuan
  
Bubungan atap
+
Sistem photovoltaic yang lengkap memasukkan semua dari bagian-bagian ini. Panel-panel surya membangkitkan daya kalau daya surya tersedia. Pengatur memastikan operasi panel-panel yang paling efisien dan mencegah kerusakan terhadap baterai. Bank baterai mengumpulkan daya untuk penggunaan kemudian. Konverter dan inverter menyesuaikan daya yang disimpan agar sama dengan keperluan beban anda. Akhirnya, beban memakan daya yang disimpan untuk melakukan pekerjaan. Sewaktu semua bagian dalam keseimbangan dan terjaga secara baik, sistem akan dapat mendukung dirinya sendiri bertahun-tahun. 
  
Antenna pada bubungan atap yang tidak penetratif dapat digunakan pada atap yang datar. Ini termasuk sebuah tripod yang dipasang pada sebuah dasar logam atau kayu. Dasar kemudian diganjal dengan bata, karung pasir, kendi air, atau apapun yang sama beratnya.  Menggunakan pengganjal pada bubungan atap menghilangkan keperluan untuk membuat lubang pada atap dengan pemasangan baut, sehingga menghindari potensi kebocoran.
+
                                                                             
 +
Gambar 7.5: Sebuah instalasi solar dengan beban DC dan AC
  
 +
Kita sekarang akan melihat lebih dekat setiap komponen photovoltaic secara seksama
  
Gambar 8.5: Dasar logam ini dapat diganjal dengan karung pasir, batu, atau
 
botol air untuk membuat panggung stabil tanpa membolongi atap
 
  
Sandaran tembok atau pengikat logam dapat digunakan pada struktur yang sudah ada seperti cerobong asap atau sisi samping bangunan. Jika antena harus diletakkan sekitar 4 meter lebih tinggi dari bubungan atap, menara yang dapat dipanjat mungkin menjadi pemecahan yang lebih baik untuk memungkinkan akses yang lebih mudah ke peralatan dan untuk mencegah pergerakan antena selama adanya angin kuat.
+
Panel surya
  
 +
Sebuah panel surya terbuat dari banyak sel surya. Sel tersambung secara elektrik untuk memberikan arus dan tegangan tertentu. Masing-masing sel di enkapsulasi untuk mengisolasi dan melindungi dari kelembaban dan korosi.
 +
                           
 +
Gambar 7.6: Akibat dari air dan karat pada panel surya
  
Logam yang tidak sama  
+
Ada beda tipe modul yang tersedia di pasaran, tergantung pada kebutuhan daya aplikasi anda. Modul yang paling umum digunakan terbuat dari 32 atau 36 crystalline silicon sel surya. Sel-sel ini berukuran sama, tersambung secara seri, dan terbungkus diantara bahan kaca dan plastik, menggunakan polymer resin (EVA) sebagai insulator termal (thermal insulator). Bagian muka modul biasanya antara 0,1 dan 0,5 m2. Panel surya biasanya memiliki dua kontak listrik, satu positif dan satu negatif.
 +
 +
Beberapa panel menyertakan kontak ekstra yang memungkinkan instalasi  dioda penyingkat atau bypass diode di antara masing-masing sel. Dioda ini melindungi panel dari gejala yang dikenal sebagai “hot-spots”. Sebuah hot spot terjadi ketika beberapa sel berada dalam bayangan sedangkan sisa panel berada di bawah matahari penuh. Daripada menghasilkan daya, sel yang terteduh bertingkah laku sebagai beban yang membuang daya. Dalam situasi ini, sel yang terteduh dapat mengalami peningkatan suhu yang luar biasa (sekitar 85 sampai 100 derajat Celsius.) Dioda penyingkat akan mencegah hot spot di sel yang terteduh, tetapi mengurangi tegangan maksimum panel. Mereka sebaiknya hanya digunakan kalau peneduhan tak dapat dielakkan. Adalah solusi yang jauh lebih baik untuk menggelar seluruh panel di bawah matahari penuh sebisa mungkin. 
  
Untuk meminimalisir korosi elektrolit ketika dua metal yang berbeda berada dalam kontak yang lembab, potensi elektrolit mereka sebaiknya sedekat mungkin. Gunakanlah pelumas dielektrik pada sambungan antara dua metal yang berbeda jenis untuk mencegah efek elektrolisa apapun.  
+
Gambar 7.7: Kurva IV yang berbeda. Arus (A) berubah dengan penyinaran, dan voltase (V) berubah dengan suhu
  
Tembaga sebaiknya tidak pernah menyentuh bahan yang berlapis secara langsung tanpa adanya perlindungan sendi yang baik. Tetesan air dari tembaga berisi ion yang akan membersihkan lapisan (seng) menara. Baja tahan karat dapat digunakan sebagai bahan penetral, tetapi anda sebaiknya tahu bahwa baja tahan karat bukanlah konduktor yang sangat baik. Jika baja tersebut dipakai sebagai penetral di antara tembaga dan logam berlapis, bidang permukaan kontak sebaiknya besar dan baja tahan karat sebaiknya tipis. Olesan sendi juga sebaiknya digunakan untuk menutup sambungan sehingga air tidak dapat menjembatani logam yang tidak sama itu.  
+
Kinerja modul surya yang direpresentasikan oleh kurva karakteristik IV atau IV characteristic curve, yang merepresentasikan arus yang disediakan berdasarkan tegangan yang ditimbulkan oleh tingkat radiasi surya tertentu.
  
 +
Kurva merepresentasikan semua nilai tegangan-arus yang mungkin. Kurva bergantung pada dua faktor utama: suhu dan radiasi surya yang diterima oleh sel. Untuk sebuah area sel surya, arus yang dihasilkan secara langsung sebanding dengan penyinaran surya (G), sedangkan tegangan berkurang dengan kenaikan suhu. Sebuah pengatur yang baik akan berusaha memaksimalkan jumlah daya yang disediakan oleh panel dengan mengikuti titik yang menyediakan daya maksimum (V x I). Daya maksimum berkaitan dengan lutut kurva IV
  
Melindungi konektor gelombang mikro
+
 
 +
Parameter panel surya
  
Kebocoran embun dalam konektor adalah sesuatu yang mungkin seringkali diamati sebagai penyebab kegagalan hubungan radio. Pastikanlah untuk mengencangkan konektor secara kuat, namun jangan pernah mempergunakan kunci inggris atau alat lain untuk melakukannya. Ingat bahwa logam memuai dan menyusut seiring dengan perubahan suhu, dan konektor yang terlalu kencang bisa rusak dalam pergantian cuaca yang ekstrim.
+
Parameter utama yang mengkarakterisasi panel photovoltaic adalah:
  
 +
1.ARUS SIRKUIT PENDEK atau SHORT CIRCUIT CURRENT (ISC): arus maksimum yang disediakan oleh panel waktu konektor mengalami sirkuit pendek.
  
Gambar 8.6: Sebuah loop untuk membuang tetesan air hujan dari konektor anda.
+
2.TEGANGAN SIRKUIT TERBUKA atau OPEN CIRCUIT VOLTAGE (VOC): tegangan maksimum yang disediakan oleh panel  ketika terminal tidak dihubungkan pada beban sama sekali (kontak terbuka). Nilai ini biasanya 22 V untuk panel-panel yang bekerja di sistem 12 V, dan secara langsung proporsional dengan sejumlah sel yang tersambung dalam serial.  
  
Ketika sudah kencang, konektor sebaiknya dilindungi dengan memberikan selapis selotip listrik, kemudian selapis selotip penyekat, and kemudian satu lapis selotip listrik lagi di bagian atas. Penyekat melindungi konektor dari rembesan air, dan lapisan selotip melindungi penyekat dari pengrusakan ultraviolet (UV). Kabel sebaiknya memiliki sebuah loop tetesan tambahan untuk mencegah air untuk masuk ke dalam transceiver.  
+
3.TITIK DAYA MAKSIMUM atau MAKSIMUM POWER POINT (Pmax): titik dimana daya yang disediakan oleh panel berada di titik maksimum, dimana Pmax = Imax x Vmax. Titik daya maksimum panel diukur dalam Watt (W) atau Watt tertinggi (Wp). Penting untuk tidak lupa bahwa dalam kondisi normal, panel akan tidak dapat bekerja pada kondisi tertinggi, karena tegangan operasi ditetapkan oleh beban atau pengatur. Nilai umum Vmax dan Imax sebaiknya sedikit lebih rendah daripada ISC dan VOC.  
  
Pengamanan
+
4.FAKTOR PENGISI atau FILL FACTOR (FF): hubungan antara daya maksimum sesungguhnya yang dapat disediakan oleh panel dengan perkalian ISC x VOC. Ini memberikan anda gambaran kualitas panel karena ini adalah indikasi tipe kurva karakteristik IV. Semakin dekat FF kepada 1, semakin banyak daya yang dapat diberikan oleh panel. Nilai umum biasanya berkisar antara 0,7 dan 0,8.
  
Selalu gunakan sebuah harness yang terpasang secara aman pada menara ketika bekerja pada ketinggian. Jika anda belum pernah bekerja pada sebuah menara, sewa seorang profesional untuk melakukannya untuk anda. Banyak negara mengharuskan latihan khusus agar seseorang dapat bekerja pada menara pada ketinggian tertentu.  
+
5.EFISIENSI atau EFFICIENCY (h): rasio antara daya listrik maksimum yang dapat diberikan oleh panel kepada beban dan daya dari radiasi surya (PL) yang masuk ke panel. Ini biasanya sekitar 10-12%, tergantung pada tipe sel (monocrystalline, polycrystalline, amorphous atau film tipis).
  
Hindari bekerja pada menara ketika ada angin kencang atau badai. Selalu memanjat dengan seorang rekan, dan hanya ketika ada banyak sekali penerangan cahaya. Pekerjaan menara akan membutuhkan waktu yang lebih lama daripada yang anda perkirakan. Ingat bahwa sangat berbahaya untuk bekerja dalam kegelapan. Berikan anda sendiri banyak waktu untuk menyelesaikan pekerjaan jauh sebelum matahari terbenam. Jika anda kehabisan waktu, ingat bahwa menara akan tetap ada di pagi hari, ketika anda dapat mulai menyelesaikan masalahnya lagi setelah anda sudah cukup beristirahat. 
+
Mempertimbangkan definisi titik daya maksimum dan faktor pengisi, kita dapat melihat bahwa:
  
Mengarahkan antena pada hubungan jarak jauh
+
h = Pmax / PL = FF . ISC . VOC / PL
  
Agar dapat secara baik mengarahkan antena pada jarak yang jauh, anda akan memerlukan semacam umpan balik visual yang memperlihatkan kepada anda daya yang diterima seketika itu pada input antena. Ini memungkinkan anda untuk melakukan perubahan kecil pada posisi antena sekaligus memperhatikan alat umpan balik, yang pada intinya berhenti ketika daya maksimum yang diterima sudah ditemukan.  
+
Nilai ISC, VOC, IPmax dan VPmax disediakan oleh pabrik dan merujuk pada kondisi standar pengukuran dengan penyinaran G = 1000 W/m2, pada ketinggian permukaan laut, untuk suhu sel Tc = 25oC.  
  
Toolkit pengatur posisi antenna yang ideal terdiri dari signal generator dan spectrum analyzer, satu untuk masing-masing ujung sambungan. Dengan menghubungkan signal generator ke ujung sambungan dan spectrum analyzer ke ujung yang lainnya, anda dapat memantau daya yang diterima dan memperhatikan efek memindahkan antena ke berbagai posisi dalam waktu yang nyata. Ketika titik maksimum sudah ditemukan pada satu ujung sambungun point-to-point, generator dan analyzer dapat ditukar, dan ulangi proses untuk ujung lainnya.  
+
Nilai parameter panel berubah jika penyinaran dan suhu berbeda. Vendor kadang-kadang akan memasukkan grafik atau tabel dengan nilai untuk kondisi yang berbeda dari yang standar. Anda sebaiknya memeriksa nilai kinerja di suhu panel yang mungkin akan sesuai dengan instalasi anda.
  
Penggunaan signal generator lebih diminati daripada menggunakan kartu radio itu sendiri, sebab signal generator dapat membangkitkan sinyal carrier terus menerus. Kartu WiFi memancarkan banyak paket pendek, yang secara cepat menghidupkan dan mematikan pemancar. Ini bisa sangat sulit untuk ditemukan dengan spectrum analyzer, khususnya ketika beroperasi di daerah yang banyak noise / interferensi.  
+
Perhatikan bahwa dua panel bisa mempunyai Wp yang sama tetapi berbeda tingkah laku dalam kondisi operasi yang berbeda. Ketika memperoleh panel, adalah penting untuk mengecek, jika memungkinkan, bahwa parameter mereka (setidaknya, ISC dan VOC) sesuai dengan nilai yang dijanjikan oleh vendor.  
  
Harga signal generator dan spectrum analyzer yang terkalibrasi dan yang bekerja di 2,4 GHz (atau malah 5 GHz jika menggunakan 802.11a) jauh di luar anggaran kebanyakan proyek. Untungnya, ada sejumlah alat murah yang bisa dipakai sebagai gantinya.
 
  
Signal  generator yang tidak mahal
+
Parameter panel untuk menentukan ukuran sistem
  
Ada banyak pemancar murah yang menggunakan pita ISM 2,4 GHz. Misalnya, telepon cordless, pemantau bayi, dan pemancar televisi miniatur semuanya membangkitkan sinyal yang terus-menerus di 2,4 GHz. Pemancar televisi (kadang-kadang disebut pengirim video atau video senders) benar-benar berguna, karena mereka seringkali memasukkan konektor antena SMA eksternal dan dapat dihidupkan oleh baterai kecil.
+
Untuk menghitung jumlah panel-panel yang diperlukan untuk mengcover beban yang ada, anda hanya perlu mengetahui arus dan tegangan di titik daya maksimum: IPmax dan VPmax.
  
Pengirim video biasanya termasuk dukungan untuk tiga atau empat saluran. Sementara yang ini tidak secara langsung berkaitan dengan saluran WiFi, mereka memungkinkan anda untuk menguji pancaran pada band bawah, tengah, atau atas.  
+
Anda sebaiknya waspada bahwa panel tidak akan beroperasi dalam kondisi sempurna karena beban atau pengaturan tidak selalu berfungsi pada titik daya maksimum panel. Anda sebaiknya mengasumsikan kehilangan efisiensi sebanyak 5% dalam perhitungan anda untuk mengkompensasi ini.  
  
Untuk pekerjaan 5 GHz, anda dapat menggunakan pengirim video dalam kombinasi dengan konverter 2,4 GHz sampai 5 GHz. Alat-alat ini menerima sinyal berdaya rendah 2,4 GHz dan memancarkan sinyal berdaya tinggi 5 GHz . Mereka biasanya cukup mahal (masing-masing $300-$500), tetapi mungkin akan tetap lebih murah daripada signal generator dan spectrum analyzer 5 GHz.
 
  
 +
Penyambungan panel-panel  surya
  
Gambar 8.7: Pengirim video 2,4 GHz dengan konektor antena SMA
+
Sekumpulan panel surya atau solar panel array adalah sekumpulan panel-panel surya yang secara elektrik saling tersambung dan terpasang pada semacam struktur penopang. Menggunakan sekumpulan panel surya memungkinkan anda untuk membangkitkan tegangan dan arus yang lebih besar daripada apa yang mungkin dibangkitkan oleh satu panel surya. Panel-panel saling tersambung sedemikian rupa bahwa tegangan yang dihasilkan berdekatan dengan (namun lebih besar daripada) tegangan baterai, dan bahwa arus yang dihasilkan cukup untuk menghidupkan peralatan dan untuk mengisi baterai.
  
Apapun yang anda pilih sebagai sumber sinyal, anda akan memerlukan sebuah cara untuk menayangkan tingkat daya yang diterima pada ujung lainnya. Sementara biaya spectrum analyzer 2,4 GHz lambat laun menurun, mereka biasanya masih berharga beberapa ribu dolar, bahkan untuk peralatan bekas.  
+
Menyambung panel-panel surya dalam konfigurasi seri akan meningkatkan tegangan yang dihasilkan. Menyambung panel-panel dalam konfigurasi paralel akan meningkatkan arus. Jumlah panel-panel yang digunakan sebaiknya ditambah sampai banyaknya daya yang dibangkitkan sedikit melebihi kebutuhan beban anda.  
  
Wi-Spy
+
Adalah sangat penting bahwa semua panel dalam array anda seidentik mungkin. Dalam array, anda sebaiknya menggunakan panel-panel bermerek dan berkarakteristik yang sama karena perbedaan sedikit dalam kondisi operasi mereka akan mempunyai dampak besar pada kesehatan dan kinerja sistem anda. Bahkan panel-panel yang mempunyai penilaian kinerja yang sama biasanya akan menunjukkan suatu varian dalam sifat mereka karena proses pembuatan. Sifat operasi sesungguhnya dari dua panel dari vendor yang sama dapat bervariasi sampai ±10%.
  
Wi-Spy adalah alat analisa spektrum USB yang dibuat oleh MetaGeek (http://www.metageek.net/). Alat ini mempunyai fitur penerima yang sangat sensitif dalam ukuran yang kecil (berukuran sebesar USB ibu jari).  
+
Jika dimungkinkan, adalah gagasan yang baik untuk menguji kinerja nyata panel-panel individu untuk mengecek karakteristik operasi mereka sebelum mengumpulkan mereka ke dalam array.  
  
 +
Gambar 7.8: Sambungan panel-panel yang paralel. Tegangan tetap konstan sedangkan arus berduplikasi. (Foto: Fantsuam Foundation, Nigeria)
  
Gambar 8.8: Spectrum Analyzer USB Wi-Spy
 
  
Versi terakhir Wi-Spy meliputi jangkauan dinamis yang lebih baik dan konektor antena eksternal. Pada versi ini juga tersedia perangkat lunak spectrum analyzer yang sangat baik untuk Windows yang dinamakan Chanalyzer. Perangkat lunak ini menyediakan sudut pandang seketika, rata-rata, maksimum, topografis, dan spektral.
+
Bagaimana caranya untuk memilih panel yang baik  
  
 +
Salah satu ukuran yang digunakan pada saat berbelanja panel-panel surya adalah membandingkan rasio nominal daya tertinggi (Wp) terhadap harganya. Ini akan memberi anda ide secara garis besar biaya per Watt untuk panel-panel yang berbeda. Akan tetapi ada sejumlah pertimbangan lain yang juga harus diingat.
  
Gambar 8.9: Pola tajam yang nyata di sebelah kiri gambar disebabkan
+
Jika anda berniat untuk menginstal panel-panel surya di daerah geografis dimana kotoran (dari debu, pasir, atau kerikil halus) akan mungkin menjadi masalah, pertimbangkanlah pembelian panel-panel dimana tanah tidak terlalu suka menempel. Panel-panel ini terbuat dari bahan yang dapat membersihkan panel secara otomatis oleh angin dan hujan.
oleh pemancar televisi 2,4 GHz berdaya tinggi
 
  
Ada paket perangkat lunak gratis yang sempurna untuk sistem operasi Mac yang dinamakan EaKiu (http://www.cookwareinc.com/EaKiu). Disamping sudut pandang standar, perangkat lunak ini juga menyediakan sudut pandang 3D, dan menambahkan dukungan untuk beberapa alat Wi-Spy.  
+
Periksa konstruksi mekanis masing-masing panel. Cek bahwa kaca dikeraskan dan bingkai aluminium kuat dan terbuat secara kokoh. Sel surya di dalam panel dapat bertahan selama lebih dari 20 tahun, tetapi mereka sangat mudah pecah dan panel harus dapat melindungi diri mereka sendiri dari bahaya mekanis. Cari garansi pabrik terutama untuk daya keluaran panel dan konstruksi mekanik panel.  
  
 +
Akhirnya, pastikanlah bahwa pabrik menyediakan tidak hanya daya tertinggi nominal panel (Wp) tetapi juga variasi daya dengan penyinaran dan suhu. Ini benar-benar penting kalau panel-panel digunakan dalam array, sebab variasi dalam parameter operasi dapat berdampak besar pada kualitas daya yang ditimbulkan dan umur kegunaan panel-panel.
  
  
 +
Baterai
  
Gambar 8.10: Sudut pandang EaKiu memungkinkan anda untuk memutar grafik dan memperjelas bagian grafik yang mana pun di waktu nyata. Mungkin ada jaringan WiFi
+
Baterai “menyimpan” reaksi kimia yang dapat dibalikkan yang menyimpan daya listrik yang nantinya dapat dipulihkan pada saat diperlukan. Daya listrik berubah menjadi daya kimia ketika baterai diisi, dan proses kebalikkannya terjadi pada saat baterai mengeluarkan daya.  
di saluran 11, dengan sumber bunyi lain yang berada di bagian lebih bawah pita.
 
  
Bagi pengguna Linux, Wi-Spy didukung oleh proyek Kismet Spectrum-Tools  (http://kismetwireless.net/spectools/). Paket ini termasuk tool command line serta GUI yang dibangun berdasarkan GTK.  
+
Baterai terbentuk oleh sekelompok elemen atau sel yang diletakan secara seri. Baterai timbal-asam terdiri dari dua elektroda timbal yang berada dalam larutan elektrolit air dan asam sulfat. Perbedaan potensial sekitar 2 volt terjadi di antara elektroda, tergantung pada nilai seketika kondisi penyimpanan baterai. Baterai yang paling umum dalam aplikasi surya fotovoltaik mempunyai tegangan nominal sebanyak 12 atau 24 volt. Maka sebuah baterai 12 V berisi 6 sel secara seri.  
  
Metode lain
+
Baterai memenuhi dua tujuan penting dalam sistem fotovoltaik: untuk memberikan daya listrik kepada sistem ketika daya tidak disediakan oleh array panel-panel surya, dan untuk menyimpan kelebihan daya  yang ditimbulkan oleh panel-panel setiap kali daya itu melebihi beban. Baterai tersebut mengalami proses siklis menyimpan dan mengeluarkan, tergantung pada ada atau tidak adanya sinar matahari. Selama waktu adanya matahari, array panel menghasilkan daya listrik. Daya yang tidak digunakan dengan segera dipergunakan untuk mengisi baterai. Selama waktu tidak adanya matahari, permintaan daya listrik disediakan oleh baterai, yang oleh karena itu akan mengeluarkannya.
  
Beberapa router nirkabel (seperti Mikrotik) menyediakan "tool pengarah antena" yang memperlihatkan kepada anda sebuah bar yang bergerak yang melambangkan daya yang diterima. Ketika bar adalah maksimum, antena sudah terarah dengan benar. Dengan beberapa router, anda juga dapat mengaktifkan mode umpan balik audio. Ini menyebabkan router akan memancarkan nada tinggi, mengubah volume nada sesuai dengan daya yang diterima.  
+
Siklus menyimpan dan mengeluarkan ini terjadi setiap kali daya yang dihasilkan oleh panel tidak sama dengan daya yang dibutuhkan untuk mendukung beban. Kalau ada cukup matahari dan bebannya ringan, baterai akan menyimpan daya. Tentunya, baterai akan mengeluarkan daya pada malam hari setiap kali sejumlah daya diperlukan. Baterai juga akan mengeluarkan daya ketika penyinaran tidak cukup untuk menutupi kebutuhan beban (karena variasi alami kondisi keikliman, awan, debu, dll. )
  
Jika anda tidak mempunyai spectrum analyzer, Wi-Spy, atau alat yang mendukung mode pengarah antena, anda perlu mempergunakan sistem operasi untuk menyediakan umpan balik mengenai kualitas hubungan nirkabel. Satu metode sederhana untuk melakukan ini dalam Linux adalah dengan loop yang secara terus-menerus memanggil iwconfig. Misalnya: 
+
Jika baterai tidak menyimpan cukup daya untuk memenuhi permintaan selama periode tidak adanya matahari, sistem akan kehabisan daya dan tidak siap memenuhi konsumsi. Di sisi lainnya, memperbesar sistem (dengan menambahkan terlalu banyak panel dan baterai) mahal dan tidak efisien. Ketika mendesain sistem yang mandiri, kita perlu mengkompromikan antara biaya komponen dengan ketersediaan daya dari sistem. Satu cara untuk melakukan ini adalah memperkirakan jumlah hari dimana sistem beroperasi secara mandiri atau number of days of autonomy. Dalam kasus sistem telekomunikasi, jumlah hari-hari otonomi bergantung pada fungsi kritisnya dalam bentuk jaringan anda. Jika peralatan akan berfungsi sebagai repeater dan merupakan bagian tulang punggung jaringan anda, anda mungkin harus mendesain sistem fotovoltaik anda dengan otonomi sampai 5-7 hari.  
               
 
    wildnet:~# while :; do clear; iwconfig; sleep 1; done
 
  
Ini akan memperlihatkan keadaan semua kartu radio dalam sistem, memperbarui sekali setiap detik. Perhatikan bahwa ini hanya akan bekerja pada sisi klien sebuah hubungan. Di sisiakses point (master mode), anda sebaiknya menggunakan perintah iwspy untuk mengumpulkan data statistik untuk alamat MAC klien:
+
Sebaliknya, jika sistem surya bertanggung jawab atas daya yang menyediakan ke peralatan pelanggan anda mungkin dapat mengurangi jumlah hari otonomi sampai dua atau tiga. Di daerah dengan penyinaran yang rendah, nilai ini mungkin perlu ditambah semakin banyak. Dalam kasus apapun, anda harus selalu menemukan keseimbangan yang baik antara biaya dan kehandalan.
  
wildnet:~# iwspy ath0 00:15:6D:63:6C:3C
 
wildnet:~# iwspy
 
ath0        Statistics collected:
 
  00:15:6D:63:6C:3C : Quality=21/94 Signal=-74 dBm Noise=-95 dBm
 
  Link/Cell/AP        : Quality=19/94 Signal=-76 dBm Noise=-95 dBm
 
  Typical/Reference : Quality:0 Signal level:0 Noise level:0
 
  
Anda kemudian dapat menggunakan loop while (seperti dalam contoh sebelumnya) untuk secara terus-menerus memperbarui keadaan hubungan.
+
Macam baterai
  
wildnet:~# while :; do clear; iwspy; sleep 1; done
+
Banyak teknologi baterai yang tersedia, dan dimaksudkan untuk penggunaan dalam berbagai  jenis aplikasi yang berbeda. Jenis yang paling cocok untuk aplikasi fotovoltaik adalah baterai yang tak bergerak (stationary battery), yang didesain untuk mempunyai lokasi tetap dan untuk skenario dimana pemakaian daya tidak teratur. Baterai yang "tidak bergerak" dapat mengakomodasi siklus pengeluaran yang dalam, tetapi mereka tidak didesain untuk menghasilkan arus tinggi dalam periode waktu yang singkat. 
  
 +
Baterai yang tidak bergerak dapat menggunakan elektrolit seperti alkali (seperti Nickel-Cadmium) atau asam (seperti Lead-Acid). Baterai yang tidak bergerak berdasarkan Nickel-Cadmium sebisa mungkin  direkomendasikan menurut kehandalan dan ketahanan mereka yang tinggi. Sayangnya, mereka cenderung menjadi jauh lebih mahal dan sulit untuk diperoleh daripada baterai timbal-asam yang disegel.
  
Prosedur Mengarahkan antena
+
Di banyak kasus ketika sulit menemukan baterai yang tidak bergerak lokal yang baik dan murah (mengimpor baterai tidak murah), anda dikondisikan untuk memakai baterai (aki) yang dirancang  untuk mobil.
  
Kunci agar dapat secara sukses mengarahkan antena pada sambungan jarak jauh adalah komunikasi. Jika anda merubah terlalu banyak variabel sekaligus (misalnya, satu tim mulai menggoyang-goyangkan antena sedangkan yang lain mencoba mengambil pengukuran kekuatan sinyal), maka proses akan membutuhkan waktu seharian dan mungkin akan berakhir dengan antena yang tidak terarah.
 
  
Anda akan mempunyai dua tim. Idealnya, setiap tim sebaiknya mempunyai sedikitnya dua orang: satu untuk mengambil pengukuran sinyal dan berkomunikasi dengan ujung yang sangat jauh, orang yang satunya lagi untuk menggerakkan antena. Ingatlah hal-hal ini selama mengerjakan sambungan jarak jauh.
+
Memakai baterai mobil 
  
1.Uji semua perlengkapan terlebih dahulu. Anda tidak ingin bermain-main dengan setting ketika anda sudah berada di lapangan. Sebelum memisahkan peralatan, hidupkan segalanya, sambungkan setiap antena dan pigtail, dan pastikan anda dapat menciptakan hubungan di antara alat-alat tersebut. Anda seharusnya dapat kembali ke keadaan yang sudah diketahui ini dengan secara sederhana menghidupkan alat tersebut, tanpa harus log in atau merubah setting apapun. Sekarang adalah waktu yang tepat untuk menyesuaikan polarisasi antena (lihat Bab 2 jika anda tidak mengerti apa artinya polarisasi).
+
Baterai mobil tidak cocok untuk aplikasi fotovoltaik karena mereka didesain untuk memberikan arus besar hanya selama beberapa detik saja (ketika menyalakan mesin) daripada memberikan arus rendah untuk periode waktu yang lama. Karakteristik aki mobil ini (juga dinamakan baterai daya cengkeram atau traction batteries) menghasilkan sebuah kehidupan efektif yang pendek kalau dipakai di sistem fotovoltaik.  
  
2.Bawa perlengkapan komunikasi cadangan. Walaupun ponsel biasanya cukup baik untuk digunakan di kota, sinyal penerimaan ponsel bisa buruk atau tidak ada di daerah pedesaan. Bawalah radio FRS atau GMRS berdaya tinggi, atau jika tim-tim anda mempunyai ijin radio amatir, gunakan sebuah rig amatir radio. Bekerja di tempat yang jauh bisa membuat frustrasi jika anda selalu bertanya kepada tim lainnya ”apakah kamu bisa mendengarkan saya sekarang?” Pilih saluran komunikasi anda dan tes radio anda (termasuk baterainya) sebelum berpisah.  
+
Baterai mobil dapat digunakan dalam aplikasi kecil dimana biaya rendah adalah pertimbangan yang paling penting, atau ketika baterai jenis lain tidak ada. Baterai mobil didesain untuk kendaraan dan gerobak tangan listrik. Mereka lebih murah daripada baterai yang tidak bergerak dan dapat melayani dalam sebuah instalasi fotovoltaik, walaupun mereka sering kali memerlukan pemeliharaan. Baterai ini tidak boleh terlalu banyak mengeluarkan dayanya, karena ini akan sangat secara luar biasa mengurangi kemampuan mereka untuk menyimpan daya. Sebuah baterai truk sebaiknya tidak mengeluarkan lebih dari 70% dari kapasitas totalnya. Ini berarti anda hanya bisa memakai maksimum 30% dari kapasitas nominal aki lead-acid sebelum aki tersebut harus diisi kembali.  
  
3.Bawa sebuah kamera. Luangkan waktu untuk mendokumentasikan lokasi setiap tempat, termasuk tanda-tanda penting dan halangan di sekitarnya. Ini dapat menjadi sangat berguna nantinya untuk menentukan kemungkinan hubungan lain ke lokasi tanpa harus mengunjungi tempat itu. Jika ini merupakan perjalanan pertama anda ke tempat tersebut, masukan koordinat GPS beserta ketinggiannya.  
+
Anda dapat memperpanjang umur baterai asam-timbal dengan menggunakan air sulingan. Dengan menggunakan densimeter atau hydrometer, anda dapat mengukur kepadatan elektrolit baterai tersebut. Sebuah aki pada umumnya mempunyai berat jenis 1,28. Menambahkan air sulingan dan merendahkan kepadatan ke 1,2 dapat membantu mengurangi korosi anoda, dengan biaya mengurangi kapasitas keseluruhan baterai. Jika anda menyesuaikan kepadatan baterai elektrolit, anda harus menggunakan air sulingan, karena air keran atau air tanah akan secara permanen merusak baterai.  
  
4.Mulai dengan memperkirakan arah dan ketinggian yang benar. Untuk memulai, kedua tim sebaiknya menggunakan triangulasi (menggunakan koordinat GPS atau sebuah peta) untuk mendapat gambaran arah yang dituju. Gunakan kompas untuk meluruskan antena ke arah yang diinginkan. Tanda-tanda alam atau bangunan besar dapat berguna untuk pengarahan. Jika anda dapat menggunakan teropong untuk melihat ujung yang satunya, maka akan lebih baik. Ketika anda sudah membuat perkiraan anda, lakukan pengukuran kekuatan sinyal. Jika anda cukup dekat dan sudah membuat perkiraan yang baik, anda mungkin sudah mendapatkan sebuah sinyal.
 
  
5.Jika semuanya gagal, buatlah tanda anda sendiri. Beberapa bentuk kondisi lapangan membuat sulit untuk memperkirakan posisi ujung sambungan yang lainnya. Jika anda sedang membangun sebuah sambungan di daerah dengan sedikit tanpa alam, gunakan / buatlah sendiri tanda tersebut seperti layang-layang, balon, cahaya senter, nyala api, atau bahkan sinyal asap mungkin dapat membantu. Anda tidak terlalu memerlukan sebuah GPS untuk mendapatkan gambaran kemana anda harus mengarahkan antena anda. 
+
Kondisi penyimpanan (State of Charge)
  
6.Uji sinyal di kedua tempat, tetapi hanya satu setiap saat. Ketika kedua ujung sudah memiliki perkiraan terbaik, antena ujung dengan gain terendah harus ditetapkan pada posisi-nya.  Menggunakan alat pemantau yang baik (seperti Kismet, Netstumbler, atau built-in klien nirkabel yang baik), tim dengan gain antena tertinggi secara perlahan-lahan menyapunya secara horisontal sekaligus mengamati meteran sinyal. Ketika posisi terbaik sudah ditemukan, coba ubah ketinggian antena. Setelah posisi yang mungkin terbaik ditemukan, kuncilah antena secara kukuh pada tempatnya dan beri tanda kepada tim yang lain untuk mulai secara perlahan menyapu tempat sekitar. Ulangi proses ini beberapa kali sampai diperoleh posisi yang terbaik untuk kedua antena.  
+
Ada dua kondisi istimewa penyimpanan yang dapat terjadi selama siklus penyimpanan dan pengeluaran daya dari baterai. Keduanya sebaiknya dihindari guna memperpanjang umur kegunaan baterai.  
  
7.Jangan sentuh antena ketika mengukur. Badan anda akan mempengaruhi pola radiasi antena. Jangan sentuh antena, dan jangan berada di garis edar tembakan, ketika mengambil pengukuran kekuatan sinyal. Ini juga berlaku untuk tim yang berada di sisi lain sambungan.
 
  
8.Jangan takut untuk melewati sinyal penerimaan terbaik. Seperti yang sudah kita lihat di bab empat, pola radiasi antenna terdiri dari beberapa sidelobe yang lebih kecil, disamping sidelobe utama yang jauh lebih besar. Jika sinyal anda yang diterima kecil, anda mungkin sudah menemukan sidelobe. Teruskan melakukan sweeping secara perlahan-lahan melewati sidelobe itu agar dapat menemukan lobe utama.
+
Penyimpanan yang berlebihan (Overcharge)
  
9.Sudut antena mungkin tampak salah. Lobe utama antena kadang hanya berada di satu sisi atau pusat antena sepertinya salah arah. Parabola dengan offset feed akan terlihat mengarah terlalu ke bawah, atau bahkan ke tanah. Jangan khawatir mengenai bagaimana antena terlihat; anda hanya perlu memperhatikan bagaimana mencari posisi terbaik untuk mendapatkan sinyal terbesar yang diterima.
+
Penyimpanan yang berlebihan atau overcharge terjadi pada saat baterai berada pada kondisi keterbatasan kapasitasnya. Jika daya yang dimasukan di luar batas titik penyimpanan maksimum,  elektrolit mulai hancur. Ini menghasilkan gelembung oksigen dan hidrogen, dalam proses yang diketahui sebagai pembuatan gas atau gasification. Ini berakibat hilangnya air, oksidasi di elektroda positif, dan dalam kasus ekstrim, terjadi bahaya ledakan.  
  
10.Teliti kembali polarisasi. Anda dapat menjadi frustrasi untuk mencoba mengarahkan antena hanya karena ternyata tim yang lain menggunakan polarisasi yang berlawanan. Sekali lagi, ini sebaiknya disesuaikan sebelum meninggalkan pangkalan, namun jika sambungan tetap lemah, melakukan pengecekan ulang tidak ada salahnya.
+
Di sisi lainnya, keberadaan gas menghindari stratifikasi asam. Setelah beberapa siklus penyimpanan dan pengeluaran yang terus menerus, asam cenderung terpusat di bagian bawah baterai, sehingga mengurangi kapasitas efektifnya. Proses gasifikasi menggerakan elektrolit dan menghindari stratifikasi. Sekali lagi, adalah perlu untuk menemukan kompromi antara keuntungan (menghindari stratifikasi elektrolit) dan keadaan merugikan (kehilangan air dan produksi hidrogen). Satu pemecahannya adalah lebih sering membiarkan penyimpanan yang sedikit berlebihan. Satu metode yang umum adalah membiarkan tegangan sebanyak 2,35 sampai 2,4 Volt untuk masing-masing elemen baterai sekali dalam beberapa hari, di suhu 25o C. Regulator sebaiknya menjamin penyimpanan berlebihan yang berkala dan terkontrol.  
  
11.Jika tidak ada yang berjalan, periksa semua bagian satu per satu. Apakah alat pada kedua ujung sambungan telah dihidupkan? Apakah semua pigtail dan konektor sudah dengan semestinya tersambung, dengan tidak ada bagian yang rusak atau ganjil? Seperti yang diuraikan secara garis besar di bab delapan, teknik troubleshooting yang baik akan menghemat waktu dan mencegah frustrasi. Bekerjalah secara perlahan-lahan dan komunikasikan status anda dengan baik dengan tim yang lain.
 
  
Dengan bekerja secara terstruktur dan berkomunikasi dengan baik, anda dapat menyelesaikan pekerjaan pengarahan antena dengan gain yang tinggi dalam waktu yang singkat saja. Jika dilakukan dengan semestinya, ini seharusnya menjadi sesuatu yang menyenangkan!
+
Pengeluaran daya yang berlebihan (Overdischarge)
  
 +
Dengan cara yang sama dimana ada batas atas, ada juga batas bawah dari kondisi penyimpanan baterai. Mengeluarkan melebihi batas itu akan menimbulkan pengrusakan pada baterai. Ketika persediaan baterai yang efektif habis, pengatur mencegah daya yang tersisa agar tidak diambil dari baterai. Kalau tegangan baterai mencapai batas minimum 1,85 Volt setiap selnya di suhu 25° C, pengatur memutuskan beban dari baterai.
  
Perlindungan sentakan dan kilat
+
Jika pengeluaran baterai sangat mendalam dan baterai tetap dalam kondisi pengeluaran untuk jangka waktu yang lama, akan terjadi tiga efek: pembentukan sulfat yang terkristal pada pelat baterai, bahan aktif pada pelat baterai akan lepas / berguguran, dan pelat baterai akan melengkung. Proses membentuk kristal sulfat yang stabil dinamakan sulfasi keras. Ini benar-benar tidak baik karena akan membentuk kristal besar yang tidak turut serta dalam reaksi kimia dan dapat membuat baterai anda tidak dapat digunakan.
  
Penyediaan daya adalah tantangan terbesar bagi kebanyakan instalasi di dunia berkembang. Di mana ada jaringan listrik, jaringan tersebut seringkali tidak terkontrol secara baik, berfluktuasi secara dramatis, dan rentan terhadap kilat. Perlindungan sentakan yang baik adalah kritis tidak hanya untuk melindungi peralatan nirkabel anda, tetapi juga seluruh peralatan yang tersambung dengannya.
+
 
 +
Parameter baterai
  
 +
Parameter utama sebuah baterai adalah:
  
Sekering dan sakelar pemutus sirkuit
+
Tegangan Nominal atau Nominal voltage, VNBat. Nilai yang paling umum adalah 12 V.
 +
Kapasitas Nominal atau Nominal Capacity, CNBat: jumlah daya maksimum yang dapat diambil dari sebuah baterai yang terisi penuh. Ini diekspresikan dalam Ampere-jam (Ah) atau Watt-jam (Wh). Banyaknya daya yang bisa didapatkan dari baterai bergantung pada waktu dimana proses ekstraksi terjadi. Mengeluarkan daya baterai dalam jangka waktu lama akan menghasilkan lebih banyak daya dibandingkan dengan mengeluarkan daya baterai dalam jangka waktu yang singkat. Kapasitas baterai oleh sebab itu dispesifikasi di waktu pengeluaran daya yang berbeda. Untuk aplikasi fotovoltaik, waktu ini sebaiknya lebih lama daripada 100 jam (C100).
 +
Maximum Depth of Discharge, DoDmax: Kedalaman pengeluaran daya adalah banyaknya daya yang diambil dari baterai dalam satu siklus pengeluaran daya, yang diekspresikan sebagai persentase. Umur baterai bergantung pada seberapa dalam pengeluaran daya itu terjadi dalam masing-masing siklus. Pabrik sebaiknya menyediakan grafik yang mengkaitkan jumlah siklus penyimpanan-pengeluaran daya dengan umur baterai. Sebagai kadiah umum anda sebaiknya menghindari pengeluaran daya baterai siklus yang dalam yang melebihi 50%. Baterai mobil sebaiknya hanya dikeluarkan dayanya sebanyak sekecil-kecilnya 30%.
 +
Kapasitas Berguna atau Useful Capacity, CUBat: adalah yang kapasitas baterai sesungguhnya (yang dapat digunakan). CUBat setara dengan perkalian kapasitas nominal dan DoD maksimum. Misalnya, kapasitas nominal baterai yang tak bergerak (C100) 120 Ah dan kedalaman pengeluaran daya sebanyak 70% mempunyai kapasitas berguna (120 x 0,7) 84 Ah.
  
Di daerah pedesaan, dan bahkan di banyak daerah perkotaan negara berkembang, sekering sulit ditemukan. Meskipun ada biaya tambahan, sangat bijak untuk memakai sakelar pemutus sebagai alternatif. Yang ini mungkin perlu diimpor, tetapi sebaiknya tidak diabaikan. Seringkali, sekering yang dapat diganti disingkirkan dan uang koin malahan digunakan. Dalam kasus terbaru, seluruh peralatan elektronik di stasiun pemancar radio pedesaan hancur ketika sambaran kilat menembus sirkuit, tanpa adanya sakelar pemutus sirkuit atau bahkan sekering untuk melindunginya.
 
  
Cara menghubungkan ke tanah
+
Mengukur kondisi penyimpanan daya baterai
  
Grounding atau penghubungan ke tanah yang baik tidak harus rumit. Ketika meng-ground-kan, anda berusaha untuk menyelesaikan dua hal: menyediakan sebuah rangkaian arus pendek untuk  sambaran petir, dan menyediakan sebuah sirkuit untuk kelebihan daya yang akan dibuang.  
+
Baterai timbal-asam 12 V yang disekat menyediakan tegangan yang berbeda tergantung pada kondisi penyimpanan dayanya. Ketika baterai penuh dengan daya dalam sebuah sirkuit terbuka, tegangan output adalah sekitar 12,8 V. Tegangan output turun dengan cepat sampai 12,6 V ketika terdapat beban. Pada saat baterai menyediakan arus yang konstan selama operasi, tegangan baterai berkurang secara linear dari 12,6 ke 11,6 V tergantung pada kondisi penyimpanan daya. Baterai timbal-asam yang disekat memberikan 95% dari dayanya dalam tegangan ini. Jika kita membuat asumsi yang lebih luas bahwa baterai yang sepenuhnya terisi mempunyai tegangan 12,6 V pada saat "penuh" dan 11,6 V pada saat "kosong", kita dapat memperkirakan bahwa baterai sudah mengeluarkan 70% ketika baterai mencapai tegangan 11,9 V. Nilai ini hanyalah perkiraan kasar karena mereka bergantung pada umur dan kualitas baterai, suhu, dll.  
  
Langkah pertama adalah melindungi peralatan dari sambaran kilat langsung atau dekat, sedangkan yang kedua adalah menyediakan jalur untuk membuang kelebihan daya yang akan menyebabkan pengumpulan listrik statis. Listrik statis ini dapat menyebabkan degradasi yang luar biasa pada kualitas sinyal, khususnya pada kepekaan penerima (misalnya, VSAT). Menyediakan rangkaian arus pendek sederhana. Tukang hanya perlu membuat jalur terpendek menggunakan kabel / permukaan yang sangat konduktif (tangkai kilat) ke tanah. Ketika petir menyambar tangkai, energi akan melewati jalur terpendek dan oleh sebab itu melompati peralatan. Ground ini sebaiknya dapat menangani tegangan tinggi (seperti ketika anda memerlukan kawat tebal, seperti tembaga lilitan ukuran 8-gauge).
 
  
Untuk menghubungkan peralatan ke tanah, letakkan sebuah tangkai petir diatas peralatan yang terpasang pada sebuah menara atau struktur lainnya. Lalu gunakan kawat konduktif gauge yang tebal untuk menghubungkan tangkai ke sesuatu yang juga terhubung ke tanah secara baik. Pipa tembaga bawah tanah dapat terhubung ke tanah secara baik (tergantung pada kedalaman mereka, kelembaban, salinitas, jumlah logam dan kandungan organik tanah). Di banyak tempat di Afrika Barat, pipa belum berada dalam tanah, dan peralatan penghubungan ke tanah sebelumnya seringkali tidak cukup dikarenakan tanah yang tidak konduktif (khas tanah tropis yang gersang secara musiman). Ada tiga cara mudah untuk mengukur efisiensi hubungan ke tanah anda:
+
Kondisi penyimpanan
 +
12 V Battery Voltage
 +
Volts per Cell
 +
100%
 +
12,7
 +
2,12
 +
90%
 +
12,5
 +
2,08
 +
80%
 +
12,42
 +
2,07
 +
70%
 +
12,32
 +
2,05
 +
60%
 +
12,2
 +
2,03
 +
50%
 +
12,06
 +
2,01
 +
40%
 +
11,9
 +
1,98
 +
30%
 +
11,75
 +
1,96
 +
20%
 +
11,58
 +
1,93
 +
10%
 +
11,31
 +
1,89
 +
0%
 +
10,5
 +
1,75
  
1.Cara yang sangat tidak akurat adalah secara sederhana menancapkan UPS berkualitas baik atau kabel listrik ke rangkaian yang mempunyai indikator deteksi hubungan tanah (lampu LED). LED ini dinyalakan oleh listrik yang mengalir ke sirkuit penghubungan ke tanah. Penghubungan ke tanah yang efektif akan menghilangkan sedikit tenaga ke tanah. Beberapa orang sebetulnya mempergunakan ini untuk mencuri sedikit penerangan gratis, karena tenaga ini tidak memutar meteran listrik!
+
Menurut tabel ini, dan mempertimbangkan bahwa baterai truk sebaiknya tidak dikeluarkan dayanya lebih dari 20% sampai 30%, kita dapat menentukan bahwa kapasitas berguna baterai truk 170 Ah adalah 34 Ah (20%) ke 51 Ah (30%). Dengan menggunakan tabel yang sama, kita menyadari bahwa kita sebaiknya memprogram pengatur untuk mencegah baterai dari mengeluarkan daya di bawah 12,3 V.
  
2.Ambil soket listrik dan bola lampu ber-Watt rendah (30 Watt), hubungkan satu kawat ke kawat tanah dan yang kedua ke kawat yang lain. Jika hubungan ke tanah berhasil, maka bola lampu akan menyala sedikit.
 
  
3.Cara yang lebih canggih adalah secara sederhana mengukur impedansi antara kontak positif dan tanah.
+
Perlindungan baterai dan pengatur
  
Jika tanah anda tidak efisien, anda akan perlu mengubur tangkai yang tertancap lebih dalam lagi (dimana tanahnya lebih lembab, mempunyai lebih banyak zat organik dan logam) atau anda perlu membuat tanah agar lebih konduktif. Sebuah pendekatan yang umum dimana ada sedikit tanah adalah menggali lubang berdiameter 1 meter dan berkedalaman 2 meter. Letakkan lempengan logam yang sangat konduktif yang berat. Ini seringkali dinamakan sebuah plomb, yang secara literal artinya timbal namun bisa berupa logam berat apapun seberat 50 kg atau lebih, seperti misalnya paron besi atau roda baja. Lalu isi lubang dengan arang dan campurkan garam, lalu timbun bagian atas dengan tanah. Basahkan bagian tersebut, dan arang dan garam akan menyebar di sekitar lubang dan membuat bagian konduktif mengelilingi plomb anda, meningkatkan efisiensi tanah.
+
Pemutus sambungan Thermomagnetic atau sekering sekali pakai harus digunakan untuk melindungi baterai dan instalasi dari arus sirkuit pendek dan kerusakan. Ada dua macam sekering: slow blow, dan quick blow. Sekering slow blow sebaiknya digunakan dengan muatan induktif atau kapasitif dimana arus tinggi dapat terjadi pada start / penyalaan pertama kali. Slow blow akan mengijinkan arus yang lebih tinggi daripada nilai ideal mereka untuk berlalu dalam waktu singkat. Sekering quick blow akan langsung hangus jika arus yang mengalir lewat mereka lebih tinggi daripada nilai ideal mereka.   
  
Jika kabel radio digunakan, kabel tersebut juga dapat dipergunakan untuk menghubungkan menara ke tanah, meskipun disain yang lebih kuat adalah untuk memisahkan penghubungan ke tanah untuk menara dari kabel. Untuk menghubungkan kabel ke tanah, secara sederhana kupas sedikit kulit kabel di titik terdekat ke tanah sebelum kabel tersebut memasuki bangunan, lalu sambungkan kabel penghubung ke tanah dari titik itu, baik dengan menyolder ataupun menggunakan konektor yang sangat konduktif. Ini kemudian perlu dibuat kedap air.  
+
Pengatur dihubungkan dengan baterai dan beban, sehingga dua jenis perlindungan yang berbeda perlu dipertimbangkan. Sebuah sekering sebaiknya ditempatkan di antara baterai dan pengatur, untuk melindungi baterai dari korsleting jika terjadi kegagalan regulator. Sekering kedua diperlukan untuk melindungi regulator dari arus beban yang berlebihan. Sekering kedua ini biasanya diintegrasikan ke dalam pengatur itu sendiri.  
  
Stabiliator & regulator daya
+
Gambar 7.9: bank baterai 3600 Ah, arus mencapai tingkat 45 A selama penyimpanan daya
  
Ada banyak merek stabiliator daya, tetapi kebanyakan adalah digital atau mekanis-elektro. Yang terakhir jauh lebih murah dan lebih biasa. Stabiliator mekanis-elektro menerima daya di 220V, 240V, atau 110V dan menggunakan energi itu untuk menjalankan motor, yang selalu menghasilkan tegangan yang diinginkan (biasanya 220V). Ini biasanya efektif, namun satuan-satuan ini menawarkan perlindungan yang sedikit dari kilat ataupun sentakan listrik lainnya. Mereka seringkali terbakar setelah satu sambaran saja. Setelah terbakar, mereka sebetulnya terpatri pada tegangan output tertentu (yang biasanya salah).  
+
Setiap sekering dinilai dengan arus maksimum dan tegangan maksimum yang dapat digunakan. Arus maksimum sekering sebaiknya 20% lebih besar daripada arus maksimum yang diperkirakan. Sekalipun baterai membawa tegangan rendah, arus sirkuit pendek dapat menimbulkan arus yang sangat tinggi yang dengan mudah dapat mencapai beberapa ratus ampere. Arus besar dapat menimbulkan kebakaran, merusak peralatan dan baterai, dan mungkin mengejutkan badan manusia.
  
Regulator digital mengatur daya menggunakan hambatan dan komponen elektronik lainnya. Mereka lebih mahal, tetapi tidak terlalu rentan terhadap kebakaran.  
+
Jika sekering rusak, jangan pernah mengganti sekering dengan sehelai kawat atau sekering yang lebih baik. Tentukan terlebih dulu sebabnya, lalu ganti sekering dengan yang sama.
  
Sebisa mungkin, gunakan regulator digital. Mereka sepadan nilainya dengan biaya tambahan, dan akan memberikan perlindungan yang lebih baik untuk sisa peralatan anda. Pastikan untuk memeriksa semua komponen sistem daya anda (termasuk stabiliator) setelah terjadinya kilat.
+
 
 +
Efek temperatur
 +
 
 +
Suhu ambien mempunyai beberapa efek penting pada sifat baterai:
 +
 
 +
Kapasitas nominal baterai (yang biasanya diberikan oleh pabrik untuk 25°C) meningkat dengan suhu pada laju di sekitar 1%/°C. Namun jika suhu terlalu tinggi, reaksi kimia yang terjadi dalam baterai melaju, yang dapat menimbulkan tipe oksidasi yang sama yang terjadi selama penyimpanan daya yang berlebihan. Ini secara nyata akan mengurangi perkiraan umur baterai. Masalah ini dapat dikompensasi sebagian dalam baterai mobil dengan menggunakan disolusi berkepadatan rendah (berat jenis 1,25 ketika baterai terisi penuh).
 +
Pada saat suhu berkurang, umur kegunaan baterai bertambah. Namun jika suhu terlalu rendah, anda menghadapi resiko pembekuan elektrolit. Suhu yang sangat dingin bergantung pada kepadatan solusi, yang juga berhubungan dengan kondisi penyimpanan daya baterai. Semakin rendah kepadatan, semakin besar resiko pembekuan. Di daerah bersuhu rendah, anda sebaiknya menghindari mengeluarkan daya baterai secara mendalam (yaitu, DoDmax dikurangi secara efektif. )
 +
Suhu juga mengubah hubungan antara tegangan dan penyimpanan daya. Adalah lebih baik untuk menggunakan regulator yang mengatur parameter penyambungan dan pemutusan tegangan rendah menurut suhu. Sensor suhu regulator sebaiknya dipasang pada baterai menggunakan selotip atau suatu metode sederhana lainnya.
 +
Pada daerah panas adalah sangat penting untuk menjaga baterai agar tetap sesejuk mungkin. Baterai harus disimpan di tempat teduh dan tidak pernah mendapat sinar matahari langsung. Sebaiknya baterai diletakkan pada penyanggah kecil untuk membiarkan udara mengalir di bawah mereka, dengan begitu meningkatkan pendinginan. 
 +
 
 +
 
 +
Bagaimana caranya untuk memilih baterai yang baik
 +
 
 +
Memilih baterai yang baik dapat menjadi tantangan di negara berkembang.  Baterai berkapasitas tinggi biasanya berat, besar dan mahal untuk diimpor. Sebuah baterai 200 Ah memiliki berat sekitar 50 kg (120 pon) dan tidak bisa diangkut sebagai bagasi tangan. Jika anda ingin baterai berumur panjang (misalnya  > 5 tahun) dan pemeliharaan baterai gratis, bersiaplah untuk membayar harganya.
 +
 
 +
Baterai yang baik selalu tersedia dengan spesifikasi teknisnya, termasuk kapasitas laju pengeluaran daya yang berbeda (C20, C100), suhu operasi, batas titik tegangan, dan syarat untuk alat pengisi ulang.
 +
 
 +
Baterai harus terbebas dari keretakan, kebocoran cairan atau tanda kerusakan apapun, dan sambungan baterai sebaiknya terbebas dari korosi. Karena tes laboratorium dibutuhkan untuk melengkapi data mengenai kapasitas dan penuaan yang sesungguhnya, bersiaplah untuk menerima kenyataan bahwa banyak bateria bermutu rendah di pasar lokal. Harga biasanya (tidak termasuk pajak angkutan dan barang impor) $3-4 USD per Ah untuk baterai timbal-asam 12 V. 
 +
 
 +
 
 +
Ekspetasi umur versus banyaknya siklus
 +
 
 +
Baterai merupakan satu-satunya bagian sistem surya yang sebaiknya dibeli secara berkala dalam jangka waktu singkat dan secara teratur diganti. Anda dapat menambah umur kegunaan baterai dengan mengurangi kedalaman pengeluaran daya per siklus. Baterai bersiklus dalam pun akan mempunyai umur baterai yang bertambah jika jumlah siklus pengeluaran daya yang dalam (>30%) dikurangi.
 +
 
 +
Jika anda mengeluarkan daya baterai secara penuh setiap hari, anda biasanya akan perlu menggantinya setelah kurang dari satu tahun. Jika anda menggunakan hanya 1/3 kapasitas baterai, baterai tersebut dapat bertahan lebih dari 3 tahun. Akan menjadi lebih murah untuk membeli baterai dengan 3 kali kapasitasnya daripada mengganti baterai tersebut setiap tahun.
 +
 
 +
 
 +
Regulator penyimpanan daya
 +
 
 +
Regulator penyimpanan daya juga dikenal sebagai pengontrol penyimpanan daya, pengatur tegangan, pengontrol penyimpanan-pengeluaran atau pengontrol penyimpanan-pengeluaran dan muatan. 
 +
Regulator berada di antara array panel-panel, baterai, dan peralatan atau beban anda.
 +
 
 +
Ingatlah bahwa tegangan baterai, walaupun selalu dekat 2 V setiap selnya, bervariasi menurut kondisi penyimpanan dayanya. Dengan mengamati tegangan baterai, pengatur mencegah penyimpanan atau pengeluaran daya yang berlebihan.
 +
 
 +
Pengatur yang digunakan di aplikasi surya sebaiknya disambung dalam serial: mereka memutuskan array panel-panel dari baterai untuk menghindari penyimpanan daya yang berlebihan, dan mereka memutuskan baterai dari beban untuk menghindari pengeluaran daya yang berlebihan. Penyambungan dan pemutusan dilakukan oleh switch yang jenisnya bisa dua macam: electromechanical (relay) atau solid state (transistor bipolar, MOSFET). Pengatur tidak boleh sekali-sekali disambungkan secara paralel.
 +
 
 +
Guna melindungi baterai dari pembuatan gas, switch membuka sirkuit penyimpanan daya ketika tegangan dalam baterai mencapai pemutusan tegangan tingginya atau high voltage disconnect (HVD) atau titik batas yang ditentukan. Pemutusan tegangan rendah atau low voltage disconnect (LVD) mencegah baterai dari pengeluaran energi yang berlebihan dengan memutuskan atau menahan beban. Untuk mencegah hubungan penyambungan dan pemutusan yang terus-menerus, pengatur tidak akan menghubungkan beban kembali sampai baterai mencapai tegangan penyambungan kembali yang rendah atau low reconnect voltage (LRV).
 +
 
 +
Nilai umum untuk sebuah baterai timbal-asam 12 V adalah:
 +
 
 +
Titik tegangan
 +
tegangan
 +
LVD
 +
11,5
 +
LRV
 +
12,6
 +
tegangan konstan teregulasi
 +
14,3
 +
Penyamaan
 +
14,6
 +
HVD
 +
15,5
 +
         
 +
Pengatur yang paling modern juga dapat secara otomatis memutuskan panel selama malam hari untuk menghindari pengeluaran daya baterai. Mereka juga dapat secara berkala menyimpan daya baterai yang berlebihan untuk meningkatkan umur mereka, dan mereka mungkin menggunakan mekanisme yang dikenal sebagai modulasi lebar nadi atau pulse width modulation (PWM) untuk mencegah gassing yang berlebihan.
 +
 
 +
Karena titik operasi daya puncak array panel akan bervariasi dengan suhu dan penerangan surya, pengatur yang baru mampu secara konstan melacak titik maksimum daya array surya. Fitur ini dikenal sebagai pelacakan titik daya maksimum atau maximum power point tracking (MPPT).
 +
 
 +
 
 +
Parameter pengatur
 +
 
 +
Ketika memilih pengatur untuk sistem anda, anda sebaiknya setidaknya mengetahui tegangan operasi atau operating voltage dan arus maksimum atau maximum current yang bisa ditangani oleh pengatur. Tegangan operasi adalah 12, 24, atau 48 V. Arus maksimum harus 20% lebih besar daripada arus yang disediakan oleh array panel-panel yang tersambung dengan regulator
 +
 
 +
Fitur dan data yang menarik lainnya termasuk:
 +
 
 +
Nilai spesifik bagi LVD, LRV dan HVD.
 +
Dukungan untuk kompensasi suhu. Tegangan yang menunjukkan kondisi penyimpanan daya baterai bervariasi dengan suhu. Atas alasan ini beberapa pengatur dapat mengukur suhu baterai dan mengkoreksi nilai batas dan penyambungan kembali yang berbeda.
 +
Instrumentasi dan pengukur. Alat yang paling umum mengukur tegangan panel dan baterai, kondisi penyimpanan daya (SoC) atau kedalaman pengeluaran daya (DoD). Beberapa pengatur memasukkan alaram istimewa untuk menunjukkan bahwa panel-panel atau beban-beban sudah diputuskan, LVD atau HVD sudah dicapai, dll.
 +
 
 +
 
 +
Konverter
 +
 
 +
Pengatur menyediakan daya DC di tegangan spesifik. Konverter dan inverter dipergunakan untuk mengatur tegangan agar sama dengan kebutuhan beban anda.
 +
 
 +
 
 +
Konverter DC/DC
 +
 
 +
Konverter DC/DC mengubah tegangan DC menjadi tegangan DC lainnya dengan nilai yang berbeda. Ada dua metode konversi yang dapat dipergunakan untuk mengubah tegangan dari baterai: konversi linear atau linear conversion dan konversi peralihan atau switching conversion.
 +
 
 +
Konversi linear menurunkan tegangan dari baterai dengan mengubah kelebihan daya menjadi panas. Metode ini sangat sederhana namun pada kenyataannya tidak efisien. Konversi peralihan pada umumnya menggunakan komponen magnetik untuk menyimpan daya secara sementara dan mengubahnya menjadi tegangan lainnya. Tegangan yang dihasilkan bisa lebih besar, lebih rendah, atau kebalikan (negatif) daripada tegangan input.
 +
 
 +
Efisiensi pengatur linear berkurang dengan semakin banyaknya perbedaan antara tegangan input dan tegangan output. Misalnya, jika kita ingin mengubah dari 12 V ke 6 V, pengatur linear akan mempunyai efisiensi sebanyak hanya 50%. Pengatur peralihan standar mempunyai efisiensi sedikitnya 80%. 
 +
 
 +
 
 +
Konverter DC/AC atau Inverter
 +
 
 +
Inverter digunakan ketika peralatan anda memerlukan daya AC. Inverter memotong dan membalikkan arus DC untuk membangkitkan gelombang segi empat yang nantinya disaring menjadi gelombang sinus yang disesuaikan dan menghapus harmonik yang tidak diinginkan. Sangat sedikit inverter yang sebetulnya menyediakan gelombang sinus yang murni sebagai output. Kebanyakan model yang tersedia di pasar menciptakan apa yang diketahui sebagai "gelombang sinus yang termodifikasi", karena output tegangan mereka bukanlah sinusoid yang murni. Ketika kita memikirkan efisiensi, gelombang sinus yang termodifikasi berkinerja lebih baik daripada inverter sinusoidal yang murni.
 +
 
 +
Ketahuilah bahwa tidak semua peralatan akan menerima gelombang sinus yang termodifikasi sebagai tegangan input. Secara umum, beberapa printer laser tidak akan berkerja dengan gelombang sinus inverter yang termodifikasi. Mesin akan tetap berfungsi, tetapi mereka mungkin memakan lebih banyak daya daripada jika mereka diberi input dengan gelombang sinus murni. Selain itu, power supply DC  cenderung semakin memanas, dan pengeras audio dapat mengeluarkan bunyi berdengung.
 +
 
 +
Disamping tipe bentuk gelombang, beberapa fitur penting inverter juga termasuk:
 +
 
 +
Kehandalan saat adanya sentakan. Inverter mempunyai dua penilaian daya: satu untuk daya yang terus-menerus, dan yang lebih tinggi untuk daya tertinggi. Mereka dapat menyediakan daya tertinggi untuk waktu yang sangat singkat, seperti ketika menghidupkan mesin. Inverter juga sebaiknya dapat secara aman menginterupsi dirinya sendiri (dengan sakelar pemutus (circuit breaker) atau sekering) seandainya terjadi arus sirkuti pendek, atau jika daya yang diminta terlalu tinggi.
 +
Efisiensi konversi. Inverter paling efisien ketika memberikan 50% sampai 90% dari rating daya terus-menerus mereka. Anda sebaiknya memilih inverter yang hampir sesuai dengan syarat beban anda. Pabrik biasanya menyediakan kinerja inverter di 70% dari daya nominalnya.
 +
Pengisian daya baterai. Banyak inverter juga memasukkan fungsi terbalik: kemungkinan mengisi daya baterai dari sebuah sumber arus AC (jaringan listrik, genset dll). Inverter tipe ini dikenal sebagai charger/inverter.
 +
Automati fail-over. Beberapa inverter dapat berpindah secara otomatis di antara sumber daya yang berbeda (jaringan listrik PLN, pembangkit daya listrik, surya) tergantung pada apa yang tersedia.
 +
 
 +
Ketika menggunakan peralatan telekomunikasi, sebaiknya menghindari penggunaan konverter DC/AC dan memberi daya kepada mereka secara langsung dari sebuah sumber DC. Kebanyakan peralatan komunikasi dapat menerima tingkatan input tegangan yang cukup lebar.
 +
 
 +
 
 +
Peralatan atau beban
 +
 
 +
Sangatlah nyata bahwa pada saat keperluan daya bertambah, bertambah pula pengeluaran biaya sistem fotovoltaik. Maka sangatlah penting untuk menyamakan ukuran sistem sesama mungkin dengan beban yang ada. Ketika mendesain sistem, anda terlebih dulu harus membuatkan perkiraan realistis konsumsi maksimum. Ketika instalasi sudah terpasang, tingkat konsumsi maksimum yang sudah ditentukan harus dipatuhi untuk menghindari sering terjadinya pemadaman listrik.
 +
 
 +
 +
Peralatan rumah
 +
 
 +
Penggunaan daya surya fotovoltaik tidak dianjurkan untuk aplikasi penukaran panas (pemanas listrik, kulkas, pemanggang roti, dll. ) Sebisa mungkin, daya sebaiknya digunakan dengan hemat memakai peralatan berdaya rendah. Ini beberapa hal yang perlu diingat ketika memilih peralatan yang pas untuk penggunaan dengan sistem surya:
 +
 
 +
Daya surya fotovoltaik cocok untuk penerangan. Dalam kasus ini, penggunaan bola lampu halogen atau lampu berpendar (fluorescent) adalah suatu keharusan. Walaupun lampu ini lebih mahal, mereka mempunyai efisiensi daya yang lebih baik daripada bola lampu ringan yang pijar (incandescent). Lampu LED juga merupakan pilihan yang baik karena mereka sangat efisien dan diberi input daya DC.
 +
Adalah mungkin untuk menggunakan daya fotovoltaik untuk peralatan yang memerlukan konsumsi rendah dan terus-menerus (seperti dalam kasus yang umum, televisi). Televisi kecil akan menggunakan daya yang lebih sedikit daripada televisi besar. Juga pertimbangkan bahwa televisi hitam putih mengkonsumsi sekitar setengah daya televisi berwarna.
 +
Daya surya fotovoltaik tidak dianjurkan untuk aplikasi apapun yang mengubah daya menjadi panas (daya termal). Gunakanlah pemanasan surya atau LPG sebagai alternatif.
 +
Mesin cuci otomatis yang biasa dapat digunakan, tetapi anda sebaiknya menghindari penggunaan program mencuci apapun yang terdapat pemanasan air terpusat.
 +
Jika anda harus menggunakan kulkas, kulkas tersebut sebaiknya mengkonsumsi daya sesedikit mungkin. Ada kulkas yang khusus yang bekerja di DC, walaupun konsumsi mereka bisa cukup tinggi (sekitar 1000 Wh/hari).
 +
 
 +
Estimasi konsumsi total adalah langkah pokok dalam menentukan besaran ukuran sistem surya anda. Berikut ini adalah tabel yang memberi anda gagasan umum pemakaian daya yang bisa anda perkirakan dari peralatan yang berbeda.
 +
 
 +
Peralatan
 +
Konsumsi (Watt)
 +
Portable computer
 +
30-50
 +
Low power lamp
 +
6-10
 +
WRAP router (one radio)
 +
4-10
 +
VSAT modem
 +
15-30
 +
PC (tanpaLCD)
 +
20-30
 +
PC (dengan LCD)
 +
200-300
 +
Network Switch (16 port)
 +
6-8
 +
 
 +
 
 +
Peralatan telekomunikasi nirkabel
 +
 
 +
Menghemat daya dengan memilih peralatan yang sesuai menekan pengeluaran dan mengurangi kesulitan. Misalnya, hubungan jarak jauh tidak terlalu memerlukan amplifier yang kuat yang menggunakan banyak daya. Sebuah kartu Wi-Fi dengan kepekaan receiver yang baik dan zona fresnel sedikitnya 60% jelas akan berfungsi lebih baik daripada amplifier, dan juga menghemat penggunaan daya. Pepatah tenar amatir radio juga berlaku di sini: amplifier terbaik adalah antena yang baik. Tindakan lebih lanjut untuk mengurangi pemakaian daya termasuk menambah kecepatan CPU, mengurangi daya pancar sampai ke nilai minimum yang cukup untuk memberikan hubungan yang stabil, menambah panjang interval beacon, dan mematikan sistem selama sistem tersebut tidak diperlukan. 
 +
 
 +
Kebanyakan sistem pembangkit tenaga surya mandiri bekerja di 12 atau 24 volt. Lebih baik, alat nirkabel yang menggunakan tegangan DC sebaiknya digunakan, yang beroperasi di tegangan 12 Volt yang disediakan oleh kebanyakan baterai asam timbal. Mengubah tegangan yang disediakan oleh baterai menjadi AC atau memakai tegangan di input titik akses yang berbeda dari tegangan baterai akan menyebabkan kehilangan daya yang tidak perlu. Sangat baik jika kita menggunakan router atau titik akses yang menerima 8-20 Volt DC.
 +
 
 +
Kebanyakan titik akses yang murah mempunyai pengatur tegangan switching di dalamnya dan akan berkerja pada kisaran tegangan tersebut tanpa modifikasi atau menjadi panas (sekalipun alat dipaketkan dengan sumber listrik 5 atau 12 Volt).
 +
 
 +
PERINGATAN: mengoperasikan titik akses anda dengan sumber listrik lain daripada yang disediakan oleh pabrik tentunya akan membatalkan garansi apapun, dan mungkin menyebabkan kerusakan pada peralatan anda. Teknik berikut akan bekerja seperti yang dijelaskan, tapi ingat jika anda mencobanya, anda melakukannya dengan resiko anda sendiri.
 +
 
 +
Buka titik akses anda dan perhatikan bagian dekat input DC untuk dua kapasitor yang relatif besar dan sebuah induktor (ferrite toroid dengan kawat tembaga yang dibelitkan padanya). Jika mereka ada, maka alat tersebut mempunyai input switch, dan tegangan input maksimum sebaiknya agak di bawah tegangan yang tertulis pada kapasitor. Biasanya penilaian kapasitor ini adalah 16 atau 25 volt. Perhatikan bahwa sumber listrik yang tidak teratur mempunyai gelombang dan mungkin memberikan input tegangan yang jauh lebih tinggi kepada titik akses anda daripada tegangan umum yang disarankan oleh apa yang tertulis. Oleh sebab itu, menyambung sumber listrik yang tidak teratur dengan tegangan 24 Volt ke alat dengan kapasitor bertegangan 25 Volt bukanlah hal yang baik. Tentunya, membuka alat anda akan membatalkan garansi apapun yang ada. Jangan coba-coba menjalankan titik akses di tegangan yang lebih tinggi jika titik akses itu tidak mempunyai regulator switching. Titik akses akan menjadi panas, rusak, atau terbakar.
 +
 
 +
Peralatan berdasarkan CPU tradisional Intel x86 adalah peralatan yang boros daya dibandingkan dengan arsitektur berbasis pada RISC seperti ARM atau MIPS. Satu dari banyak motherboard dengan konsumsi daya terendah adalah platform Soekris yang menggunakan prosesor AMD ElanSC520. Pilihan yang berbeda dari AMD (ElanSC atau Geode SC1100) adalah penggunaan peralatan dengan prosesor MIPS. Prosesor MIPS mempunyai kinerja yang lebih baik daripada AMD Geode, sesuatu yang harus dibayar dengan konsumsi daya antara 20-30% lebih banyak.
 +
 
 +
Linksys WRT54G yang populer berfungsi di tegangan antara 5 dan 20 volt DC dan menggunakan daya sekitar 6 Watt, tetapi alat ini memiliki Ethernet switch didalamnya. Mempunyai sebuah switch tentu saja baik dan berguna - tetapi switch ini menggunakan daya ekstra. Linksys juga menyediakan titk akses Wi-Fi yang dinamakan WAP54G yang menggunakan daya hanya sebesar 3 Watt dan dapat menjalankan OpenWRT dan Freifunk firmware. Sistem 4G Accesscube menggunakan daya sekitar 6 Watt ketika diperlengkapi dengan sebuah antarmuka WiFi. Jika 802.11b cukup, maka kartu mini PCI dengan chipset Orinoco berkinerja dengan baik saat menggunakan daya minimum.
 +
 
 +
Peralatan
 +
Konsumsi (Watt)
 +
Linksys WRT54G
 +
(BCM2050 radio)
 +
6
 +
Linksys WAP54G
 +
(BCM2050 radio)
 +
3
 +
Orinoco WavePoint II ROR
 +
(30mW radio)
 +
15
 +
Soekris net4511
 +
(no radio)
 +
1.8
 +
PC Engines WRAP.1E-1
 +
(no radio)
 +
2.04
 +
Mikrotik Routerboard 532
 +
(no radio)
 +
2.3
 +
Inhand ELF3
 +
(no radio)
 +
1.53
 +
Senao 250mW radio
 +
3
 +
Ubiquiti 400mW radio
 +
6
 +
             
 +
Banyaknya daya yang diperlukan oleh peralatan nirkabel bergantung tidak hanya pada arsitektur tetapi juga pada jumlah jaringan antarmuka, radio, macam memori/penyimpanan dan lalu-lintas. Sebagai kadiah umum, motherborad nirkabel konsumsi rendah mengkonsumsi 2 sampai 3 W, dan kartu radio 200 mW mengkonsumsi sampai 3 W.  Kartu berdaya tinggi (seperti 400 mW Ubiquity) mengkonsumsi sekitar 6 W. Stasion pengulang dengan dua radio dapat berkisar antara 8 sampai 10 W.
 +
 
 +
Walaupun standar IEEE 802.11 meliputi mekanisme cara penghematan daya atau power saving mode (PS), keuntungannya tidak sebaik seperti yang anda harapkan. Mekanisme utama untuk penghematan daya adalah memungkinkan stasiun untuk secara periodik me-non-aktifkan kartu nirkabel mereka dengan sirkuit pengatur waktu. Ketika kartu nirkabel aktif, kartu tersebut akan mengecek apakah beacon tersedia, yang menunjukkan adanya trafik yang menunggu. Penghematan daya oleh karena itu hanya terjadi di sisi klien, karena titik akses harus tetap aktif untuk memancarkan beacon dan menyimpan trafik bagi klien.
 +
 
 +
Mode penghematan daya mungkin tidak kompatibel antar pabrik, yang dapat menyebabkan tidak stabilnya hubungan nirkabel. Adalah hampir selalu yang terbaik untuk membiarkan mode penghematan daya agar tetap tidak aktif pada semua peralatan, karena kesukaran yang ditimbulkan mungkin akan melebihi jumlah penghematan daya yang sedikit.
 +
 
 +
 
 +
Memilih tegangan
 +
 
 +
Kebanyakan sistem mandiri yang berdaya rendah menggunakan baterai berdaya 12 V, karena daya baterai tersebut adalah tegangan operasional yang umum dipergunakan dalam baterai asam-timbal yang disekat. Ketika mendesain sebuah sistem komunikasi nirkabel, anda harus mempertimbangkan tegangan yang sangat efisien operasi peralatan anda. Sementara tegangan input dapat menerima wilayah tegangan yang lebar, anda perlu memastikan bahwa konsumsi daya keseluruhan sistem adalah minimal.
 +
 
 +
 
 +
Memasang kabel
 +
 
 +
Bagian penting instalasi adalah pengawatan, karena pengawatan yang baik akan menjamin pemindahan daya yang efisien. Beberapa praktek yang baik yang sebaiknya anda pertimbangkan termasuk:
 +
 
 +
Gunakan sekrup untuk untuk mengencangkan kabel pada sambungan baterai. Hubungan yang longgar akan memboroskan daya.
 +
Oleskan Vaseline atau selai mineral pada sambungan baterai. Sambungan yang rusak mempunyai hambatan tambahan, yang menimbulkan kehilangan.
 +
Untuk arus rendah (<10), pertimbangkanlah penggunaan konektor powerpole Faston atau Anderson. Untuk arus yang lebih besar, gunakanlah metalik ring berulir.
 +
 
 +
Ukuran kawat biasanya tersedia dalam American Wire Gauge (AWG). Selama perhitungan anda, anda perlu melakukan konversi antara AWG dan mm2 untuk memperkirakan hambatan kabel. Misalnya, kabel AWG #6 mempunyai diameter  4,11 mm dan dapat bekerja dengan baik sampai 55 A. Sebuah  grafik koversi, yang didalamnya termasuk perkiraan hambatan dan kapasitas mengangkut arus, tersedia dalam Appendix D. Selalu ingat bahwa kapasitas mengangkut arus juga dapat bervariasi tergantung pada macam isolasi dan aplikasi. Jika anda ragu-ragu, konsultasikan dengan pabrik untuk lebih banyak informasi.
 +
 
 +
 
 +
Orientasi panel surya
 +
 
 +
Sebagian besar daya yang datang dari matahari tiba dalam bentuk garis lurus. Modul surya akan menangkap lebih banyak daya jika modul tersebut “menghadap” matahari, tegaklurus terhadap garis lurus antara posisi instalasi dan matahari. Tentunya, posisi matahari terus-menerus berubah relatif terhadap tanah, oleh sebab itu kita perlu menemukan posisi optimal bagi panel-panel kita. Orientasi panel-panel ditentukan oleh dua sudut, azimut a dan kemiringan atau ketinggian ß. Azimut adalah sudut ke arah selatan bagi mereka yang berada di belahan bumi utara, atau sudut ke arah utara bagi mereka di belahan bumi selatan. Kemiringan adalah sudut yang terbentuk oleh permukaan modul dan bidang horisontal. 
 +
 
 +
 
 +
Azimuth
 +
 
 +
Anda sebaiknya membuat modul mengarah ke arah khatulistiwa (menghadap ke selatan di belahan bumi utara, dan utara di yang selatan) agar selama siang hari panel tersebut dapat menangkap jumlah radiasi sebanyak mungkin (a = 0). 
 +
 
 +
Adalah sangat penting untuk memastikan bahwa tidak ada bagian panel-panel yang berada di bawah tempat yang teduh!. Pelajari elemen di sekitar array panel (pohon, gedung, tembok, panel lain, dll. ) untuk memastikan bahwa mereka tidak akan pernah membentuk bayangan di atas panel-panel. Adalah dapat diterima untuk memutar panel ±20o ke arah timur atau barat jika diperlukan (= ±20o).
 +
 
 +
 
 +
Kemiringan
 +
 
 +
Ketika anda sudah menetapkan azimut, parameter yang pokok dalam perhitungan kita adalah kemiringan panel, yang akan kita ungkapkan sebagai sudut beta (ß). Tinggi maksimum yang dicapai oleh matahari setiap hari akan bervariasi, dengan maksimum pada hari pertengahan musim panas dan minimum pada pertengahan musim dingin. Idealnya, panel-panel sebaiknya mengikuti variasi ini, tetapi ini biasanya tidak mungkin karena alasan biaya.
 +
 
 +
Dalam instalasi dengan peralatan telekomunikasi adalah normal untuk memasang panel pada kemiringan tertentu. Dalam kebanyakan skenario telekomunikasi, permintaan daya sistem adalah konstan sepanjang tahun. Penyediaan daya yang cukup selama "bulan terburuk" akan terjadi paling baik untuk sisa tahun.
 +
 +
Nilai ß sebaiknya memaksimalisir rasio antara tawaran dan permintaan daya.
 +
 
 +
Untuk instalasi dengan konsumsi yang konsisten (atau hampir konsisten) sepanjang tahun, sangat diinginkan untuk mengoptimalkan instalasi untuk menangkap radiasi maksimum selama bulan "musim dingin". Anda sebaiknya menggunakan nilai mutlak garis lintang dari tempat (sudut F) yang bertambah sebanyak 10° (ß = | F | + 10 °).
 +
Untuk instalasi dengan konsumsi yang kurang selama musim dingin, nilai garis lintang dari tempat dapat digunakan sebagai kemiringan panel surya. Dengan cara ini, sistem dioptimisasi untuk bulan-bulan musim semi dan musim gugur (ß = | F |).
 +
Untuk instalasi yang hanya digunakan selama musim panas, anda sebaiknya menggunakan nilai mutlak garis lintang tempat (sudut F) yang dikurangi sebanyak 10° (ß = | F | - 10°).
 +
 
 +
Kemiringan panel tidak boleh kurang dari 15° untuk menghindari penumpukan debu dan/atau kelembaban pada panel. Dalam daerah dimana terdapat salju dan es,  sangatlah penting untuk melindungi panel-panel dan menambah kemiringan mereka sebesar 65° atau lebih.
 +
 
 +
Jika ada pertambahan yang besar dalam konsumsi selama musim panas, anda mungkin perlu mempertimbangkan untuk mengatur dua sudut kemiringan yang tetap, satu posisi untuk bulan musim panas dan lain untuk bulan musim dingin. Ini akan memerlukan struktur penopang yang khusus dan jadwal yang teratur untuk mengubah posisi panel-panel.
 +
 
 +
 +
Bagaimana caranya untuk menentukan ukuran sistem fotovoltaik anda
 +
 
 +
Ketika memilih peralatan untuk memenuhi kebutuhan daya anda, anda perlu menentukan setidaknya yang berikut ini:
 +
 
 +
Jumlah dan macam panel surya yang diperlukan untuk menangkap daya surya yang cukup untuk mendukung beban anda.
 +
Kapasitas minimum baterai. Baterai perlu menyimpan cukup daya untuk menyediakan daya pada malam hari dan hari-hari dengan penyinaran matahari yang sedikit, dan akan menentukan jumlah hari-hari otonomi anda.
 +
Karakteristik semua bagian lainnya (regulator, perkabelan, dll. ) yang diperlukan untuk mendukung banyaknya daya yang dihasilkan dan disimpan.
 +
 
 +
Perhitungan besaran ukuran sistem penting, karena kecuali jika komponen sistem seimbang, daya (dan juga, uang) akan terbuang percuma. Misalnya, jika kita memasang lebih banyak panel surya untuk menghasilkan lebih banyak daya, baterai sebaiknya mempunyai kapasitas yang cukup untuk menyimpan daya tambahan yang dihasilkan. Jika kumpulan baterai terlalu kecil dan beban tidak menggunakan daya  maka ketika daya tersebut dihasilkan, maka daya harus dibuang. Sebuah regulator amperage yang lebih kecil daripada yang diperlukan, atau satu kabel yang terlalu kecil, dapat menjadi sebab kegagalan (atau bahkan kebakaran) dan membuat instalasi tidak berguna.
 +
 
 +
Jangan pernah lupa bahwa kemampuan daya fotovoltaik untuk menghasilkan dan menyimpan daya listrik terbatas. Dengan tidak sengaja meninggalkan sebuah bola lampu ringan tetap menyala pada siang hari dapat dengan mudah menghabiskan cadangan daya anda sebelum malam hari, ketika tidak ada daya tambahan yang tersedia. Ketersediaan "bahan bakar" untuk sistem fotovoltaik (yaitu, radiasi matahari) bisa sulit untuk diramalkan. Sebenarnya, tidak pernah mungkin untuk benar-benar memastikan bahwa sistem yang mandiri dapat memberikan daya yang diperlukan pada saat tertentu kapanpun. Sistem pembangkit tenaga surya didesain untuk konsumsi tertentu, dan jika pengguna melanggar batas yang sudah direncanakan, maka penyediaan daya akan gagal.
 +
 
 +
Metode desain yang kami usulkan termasuk pertimbangan keperluan daya, dan berdasarkan keperluan tersebut memperhitungkan sistem yang berfungsi untuk sejumlah waktu maksimum sehingga sistem itu dapat diandalkan sebisa mungkin. Tentunya, jika lebih banyak panel dan baterai terpasang, akan lebih banyak daya yang dapat dikumpulkan dan disimpan. Peningkatan kehandalan ini juga akan mempunyai pertambahan dalam biaya.
 +
 
 +
Dalam beberapa instalasi fotovoltaik (seperti penyediaan daya untuk peralatan telekomunikasi pada tulang punggung jaringan), faktor kehandalan lebih penting daripada biaya. Pada instalasi pelanggan, biaya rendah mungkin merupakan faktor yang paling penting. Menemukan keseimbangan antara biaya dan kehandalan bukanlah tugas yang mudah, tetapi apapun situasinya, anda sebaiknya dapat menentukan apa yang diharapkan dari pilihan desain anda, dan pada biaya berapa.
 +
 
 +
Metode yang kita akan gunakan untuk menentukan besaran ukuran sistem dikenal sebagai metode bulan terburuk atau method of the worst month. Secara sederhana, kita hitung dimensi sistem mandiri tersebut, agar sistem itu dapat berfungsi dalam bulan dimana permintaan daya terbesar terkait dengan ketersediaan daya surya. Bulan tersebut merupakan yang teburuk dalam setahun, karena bulan ini mempunyai rasio terbesar antara daya yang diperlukan dan daya yang tersedia.
 +
 
 +
Dengan menggunakan metode ini, kehandalan / reliability dimasukan sebagai pertimbangan dengan menetapkan jumlah maksimum hari dimana sistem dapat beroperasi tanpa menerima radiasi surya (yaitu, ketika semua konsumsi dibuat hanya dengan mengorbankan daya yang disimpan dalam baterai). Ini dikenal sebagai jumlah maksimum hari otonomi atau maximum number of days of autonomy (N), dan dapat dibayangkan sebagai jumlah hari berawan yang berurutan jika panel tidak mengumpulkan jumlah daya apapun yang berarti. 
 +
 
 +
Ketika memilih N, kita harus mengetahui kondisi iklim setempat, serta keterkaitan ekonomi dan sosial terhadap instalasi tersebut. Apakah instalasi tersebut akan digunakan untuk menerangi rumah, rumah sakit, pabrik, untuk hubungan radio, atau untuk suatu aplikasi lainnya? Ingatlah bahwa pada saat N bertambah, bertambah pula investasi dalam peralatan dan pemeliharaan. Juga penting untuk mengevaluasi semua kemungkinan biaya logistik penggantian peralatan. Tidaklah sama antara mengganti baterai yang dayanya sudah habis dari sebuah instalasi di tengah kota dengan mengganti baterai di atas menara telekomunikasi yang berlokasi beberapa jam lebih jauh untuk ditempuh dengan berjalan kaki. 
 +
 
 +
Menetapkan nilai N bukanlah tugas yang mudah, karena ada banyak faktor yang terlibat, dan banyak di antara mereka tidak bisa dievaluasi secara mudah. Pengalaman anda akan memainkan peranan penting dalam menentukan ukuran sistem ini. Satu nilai yang biasanya digunakan untuk peralatan telekomunikasi yang penting adalah N = 5, sedangkan untuk peralatan pelanggan berbiaya rendah sangatlah mungkin untuk mengurangi otonomi sampai N = 3.
 +
 
 +
Dalam Appendix E, kami sudah memasukkan beberapa tabel yang akan memudahkan pengumpulan data yang diperlukan untuk menentukan ukuran sistem. Sisa bab ini akan menjelaskan secara terperinci informasi apa yang anda perlu kumpulkan atau perkirakan dan bagaimana caranya untuk menggunakan metode "bulan terburuk".
 +
 
 +
Data yang perlu dikumpulkan
 +
 
 +
Lintang instalasi / latitude of the installation. Ingatlah untuk menggunakan tanda positif untuk belahan bumi utara dan negatif untuk sebelah selatan.
 +
Data radiasi surya / solar radiation data. Untuk metode "bulan terburuk" cukup diketahui hanya dua belas nilai, satu untuk setiap bulannya. Kedua belas angka ini adalah nilai rata-rata bulanan penyinaran global harian di bidang horisontal (Gdm(0), dalam kWh/m2 per hari). Nilai bulanan adalah jumlah nilai penyinaran global untuk setiap harinya dalam sebulan, yang dibagi dengan jumlah hari dalam bulan tersebut.
 +
 
 +
Jika anda mempunyai data dalam Joule (J), anda dapat mempergunakan konversi berikut: 
 +
 
 +
            1 J = 2.78 x 10-7 kWh
 +
 
 +
Data penyinaran Gdm (0) dari banyak tempat di dunia dikumpulkan dalam tabel dan database. Anda sebaiknya memeriksa informasi ini dari kantor pengamat cuaca yang berdekatan dengan lokasi implementasi anda, namun janganlah kaget jika anda tidak menemukan data dalam format elektronik. Adalah gagasan yang baik untuk bertanya pada perusahaan yang memasang sistem fotovoltaik di daerah tersebut, karena pengalaman mereka bisa sangat berguna.
 +
 
 +
Jangan anggap "jam matahari" sama dengan "jam puncak matahari”. Jumlah jam puncak matahari tidak ada hubungannya dengan jumlah jam tanpa awan, tetapi merujuk pada banyaknya penyinaran harian. 5 jam matahari dalam sehari tanpa awan belum tentu merupakan jam itu ketika matahari berada zenithnya.
 +
 
 +
Jam puncak matahari adalah nilai radiasi matahari yang dinormalisasikan 1000 W/m2 pada 25o C. Jadi ketika kita merujuk pada 5 jam puncak matahari, ini berarti radiasi matahari harian 5000 W/m2.
 +
 
 +
 
 +
Karakteristik kelistrikan komponen sistem
 +
 
 +
Karakteristik kelistrikan komponen sistem anda sebaiknya disediakan oleh pabrik. Adalah dianjurkan untuk membuat pengukuran anda sendiri untuk memeriksa deviasi dari nilai nominal. Sayangnya, deviasi dari nilai yang dijanjikan bisa besar dan sebaiknya dinantikan.
 +
 
 +
Berikut ini adalah nilai minimum yang harus anda kumpulkan sebelum menentukan ukuran sistem anda:
 +
 
 +
 
 +
Panel
 +
 
 +
Anda perlu mengetahui tegangan VPmax dan arus IPmax di titik daya maksimum dalam kondisi standar. 
 +
 
 +
 
 +
Baterai
 +
 
 +
Kapasitas nominal  (untuk 100 jam pengeluaran daya) CNBat, tegangan operasional VNBat, dan kedalaman maksimum pengeluaran daya DoDmax atau kapasitas berguna CUBat. Anda juga perlu mengetahui macam baterai yang anda berencana untuk gunakan, baik apakah itu timbal-asam tersekat, AGM, baterai mobil yang sudah dimodifikasi dll. Macam baterai penting ketika menentukan batas dalam pengatur.
 +
 
 +
 
 +
Regulator
 +
 
 +
Anda perlu mengetahui nominal tegangan VNReg, dan arus maksimum yang bisa beroperasi
 +
ImaxReg.
 +
 
 +
 
 +
Konverter/ Inverter DC/AC 
 +
 
 +
Jika anda akan menggunakan konverter, anda perlu mengetahui tegangan nominal VNConv, daya seketika PIConv  dan kinerja pada 70% beban maksimum H70.
 +
 
 +
 
 +
Peralatan atau beban
 +
 
 +
Kita perlu mengetahui tegangan nominal VNC dan daya nominal operasi PC untuk setiap bagian peralatan yang dihidupkan oleh sistem. Guna mengetahui jumlah daya yang akan dikonsumsi oleh instalasi kita, sangatlah penting untuk mempertimbangkan waktu rata-rata setiap beban yang akan dipakai. Apakah terus-menerus? Atau apakah akan dipakai tiap hari, tiap minggu, setiap bulan atau tahun? Pertimbangkan pergantian apapun dalam penggunaan yang mungkin berdampak pada  banyaknya daya yang diperlukan (penggunaan musiman, periode latihan atau sekolah, dll. )
 +
 
 +
 
 +
Variabel lainnya
 +
 
 +
Terlepas dari sifat-sifat kelistrikan komponen dan beban, adalah perlu untuk mengambil keputusan pada  dua informasi tambahan sebelum kita dapat menentukan besaran ukuran sebuah sistem fotovoltaik. Dua keputusan ini adalah jumlah hari otonomi yang diperlukan dan tegangan operasional sistem.
 +
 
 +
 
 +
N, jumlah hari-hari otonomi
 +
 
 +
Anda perlu menentukan nilai untuk N yang akan menyeimbangkan kondisi meteorologi dengan tipe instalasi dan biaya keseluruhan. Adalah mustahil untuk memberikan nilai konkrit N yang berlaku untuk setiap instalasi, tetapi tabel berikut ini memberi beberapa nilai yang dianjurkan. Gunakan nilai ini sebagai perkiraan kasar, dan konsultasikan dengan seorang perancang berpengalaman untuk mencapai keputusan akhir.
 +
 
 +
Ketersediaan Matahari
 +
Instalasi Rumah
 +
Instalasi Kritis
 +
Sangat berawan
 +
5
 +
10
 +
Bervariasi
 +
4
 +
8
 +
Terang
 +
3
 +
6
 +
 
 +
 
 +
VN, tegangan nominal instalasi
 +
 
 +
Komponen sistem anda perlu dipilih agar dapat berfungsi pada tegangan nominal VN. Tegangan ini biasanya 12 atau 24 Volt untuk sistem kecil, dan jika konsumsi daya total melebihi 3 kW, tegangan akan menjadi 48 V. Seleksi VN tidak sembarangan, dan bergantung pada ketersediaan peralatan.
 +
 
 +
Jika peralatan mengijinkannya, cobalah menetapkan tegangan nominal ke 12 atau 24 V. Banyak peralatan komunikasi nirkabel menerima tegangan input yang lebar dan dapat digunakan tanpa konverter.
 +
Jika anda perlu menghidupkan beberapa macam peralatan yang berkerja pada tegangan nominal yang berbeda, perhitungkan tegangan yang meminimalkan pemakaian daya secara keseluruhan, termasuk kehilangan pada konversi daya menggunakan konverter DC/DC dan DC/AC.
 +
 
 +
 
 +
Prosedur perhitungan
 +
 
 +
Ada tiga langkah utama yang perlu diikuti untuk menghitung ukuran sistem yang sesuai:
 +
 
 +
1.Perhitungkan daya surya yang ada (sebagai tawaran). Berdasarkan data statistik radiasi surya, dan orientasi dan kemiringan optimal panel-panel surya, kita menghitung daya surya yang ada. Penilaian daya surya yang ada dilakukan dalam interval bulanan, mengurangi data statistik sampai 12 nilai. Perkiraan ini adalah kompromi yang baik antara ketepatan dan kesederhanaan.
 +
2.Perkirakan daya listrik yang diperlukan (sebagai permintaan). Catat sifat pemakaian daya peralatan yang dipilih serta perkiraan lama penggunaannya. Lalu perhitungkan daya listrik yang diperlukan dalam setiap bulannya. Anda sebaiknya mempertimbangkan fluktuasi penggunaan yang diharapkan karena variasi antara musim dingin dan musim panas, periode musim hujan/kering, periode sekolah/liburan, dll. Hasil berupa 12 nilai permintaan daya, masing-masing untuk setiap bulan dalam setahun.
 +
3.Perhitungkan ukuran sistem ideal (hasilnya). Dengan data dari “bulan terburuk”, ketika hubungan antara daya surya yang dibutuhkan dan daya yang tersedia sangat erat, maka kita menghitung:
 +
 
 +
Arus yang harus disediakan oleh array panel, yang akan menentukan jumlah minimum panel.
 +
Kapasitas penyimpanan daya yang diperlukan untuk menutupi jumlah minimum hari-hari otonomi, yang akan menentukan jumlah baterai yang diperlukan.
 +
Karakteristik kelistrikan regulator yang diperlukan.
 +
Panjang dan bagian-bagian yang diperlukan dari kabel itu untuk hubungan listrik. 
 +
 
 +
 
 +
Arus yang diperlukan dalam bulan terburuk
 +
 
 +
Untuk setiap bulan, anda perlu memperhitungkan nilai Im, yang merupakan arus maksimum sehari-hari yang harus disediakan oleh array panel yang beroperasi pada tegangan nominal VN, dalam suatu hari dengan penyinaran Gdm untuk bulan ”m”, bagi panel-panel dengan kemiringan ß derajat.
 +
 
 +
Im(BULAN TERBURUK) akan menjadi nilai Im yang paling besar, dan penentuan besaran ukuran sistem didasarkan pada data bulan terburuk itu. Perhitungan Gdm (ß) untuk tempat tertentu dapat dibuat berdasarkan Gdm(0) dengan menggunakan software komputer seperti PVSYST (http://www.pvsyst.com/) atau PVSOL (http://www.solardesign.co.uk/).
 +
 
 +
Karena loss di pengatur dan baterai, dan karena fakta bahwa panel-panel tidak selalu berfungsi di titik daya maksimum, arus yang diperlukan ImMAX dihitung sebagai berikut:
 +
 
 +
ImMAX = 1,21 Im (BULAN TERBURUK)
 +
 
 +
Ketika anda sudah menentukan bulan terburuk, nilai ImMAX, dan total daya yang anda perlukan ETOTAL (BULAN TERBURUK), anda dapat melanjutkan ke perhitungan terakhir. ETOTAL adalah jumlah seluruh beban DC dan AC, dalam Watt. Untuk menghitung ETOTAL, lihatlah Appendix E.
 +
 
 +
 
 +
Jumlah panel
 +
 
 +
Dengan mengkombinasikan panel-panel surya dalam serial dan paralel, kita dapat mendapatkan tegangan dan arus yang diinginkan. Ketika panel-panel tersambung dalam serial, jumlah tegangan total setara dengan jumlah tegangan individual masing-masing modul, sedangkan arus tidak berubah. Ketika menyambungkan panel-panel secara paralel, arus dijumlahkan sedangkan tegangan tidak berubah. Sangatlah penting untuk memakai panel-panel yang sifatnya yang hampir identik ketika membuat array.
 +
 
 +
Anda sebaiknya mencoba untuk memperoleh panel-panel dengan VPmax yang sedikit lebih besar daripada tegangan nominal sistem (12, 24 atau 48 V). Ingatlah bahwa anda perlu menyediakan sedikit  tegangan dari tegangan nominal baterai untuk mengisinya. Jika tidak mungkin untuk menemukan satu panel yang memenuhi keperluan anda, anda perlu menyambung beberapa panel dalam serial untuk mencapai tegangan yang anda inginkan. Jumlah panel yang di seri Nps  adalah sama dengan tegangan nominal sistem dibagi tegangan sebuah panel, yang dibulatkan ke atas ke bilangan bulat terdekat.
 +
 
 +
Nps = VN/VPmax
 +
 
 +
Untuk memperhitungkan jumlah panel yang paralel (Npp), anda perlu membagi ImMAX dengan arus sebuah panel di titik daya maksimum Ipmax, yang dibulatkan ke atas ke integer terdekat.
 +
 
 +
Npp = ImMAX/IPmax
 +
 
 +
Jumlah total panel adalah hasil perkalian jumlah panel yang di seri (untuk menentukan tegangan) oleh jumlah panel yang di paralel (untuk menentukan arus).
 +
 
 +
NTOTAL = Nps x Npp
 +
 
 +
 
 +
Kapasitas baterai atau akumulator
 +
 
 +
Baterai menentukan tegangan keseluruhan sistem dan memerlukan kapasitas yang cukup untuk menyediakan daya kepada beban pada saat tidak terdapat radiasi surya yang cukup. Untuk memperkirakan kapasitas baterai kita, kita terlebih dulu menghitung kapasitas daya sistem kita yang diperlukan (kapasitas yang diperlukan atau necessary capacity, CNEC). Kapasitas yang diperlukan ini bergantung pada daya yang ada selama "bulan terburuk" dan jumlah hari-hari otonomi yang diinginkan (N).
 +
 
 +
          CNEC (Ah)= ETOTAL(Bulan Terburuk)(Wh) / VN(V) x N
 +
 
 +
Kapasitas nominal baterai CNOM harus lebih besar daripada CNEC karena kita tidak bisa sepenuhnya mengeluarkan daya baterai. Untuk menghitung ukuran baterai kita perlu mempertimbangkan kedalaman maksimum pengeluaran daya (DoD) yang dimungkinkan oleh baterai:
 +
 
 +
          CNOM (Ah) = CNEC (Ah)/ DoDMAX
 +
 
 +
Untuk memperhitungkan jumlah baterai dalam seri (Nbs), kita bagi tegangan nominal instalasi kita (VN) dengan tegangan nominal satu baterai (VNBat):
 +
 
 +
          Nbs = VN / VNBat
 +
 
 +
 
 +
Regulator
 +
 
 +
Sebuah peringatan penting: selalu gunakan regulator dalam seri, tidak paralel. Jika pengatur anda tidak mampu mendukug arus yang diperlukan oleh sistem anda, anda perlu membeli sebuah pengatur baru dengan arus yang lebih besar.
 +
 
 +
Untuk alasan keamanan, sebuah pengatur baru harus mampu beroperasi dengan arus ImaxReg sedikitnya 20% lebih besar daripada intensitas maksimum yang disediakan oleh array panel-panel:
 +
 
 +
        ImaxReg = 1,2 Npp IPMax
 +
 
 +
 
 +
Inverter DC/AC
 +
 
 +
Jumlah daya yang diperlukan untuk peralatan AC dihitung dengan memasukkan semua loss yang disebabkan oleh konverter DC/AC atau inverter DC/AC. Ketika memilih inverter, selalu ingat bahwa kinerja inverter bervariasi berdasarkan banyaknya daya yang dibutuhkan. Sebuah inverter mempunyai karakteristik kinerja yang lebih baik ketika beroperasi dekat kemampuan dayanya. Menggunakan inverter 1500 Watt untuk menghidupkan beban 25 Watt sangatlah tidak efisien. Untuk menghindari daya yang terbuang ini, sangatlah penting untuk menganggap bukan daya tertinggi seluruh peralatan anda, tetapi puncak daya peralatan yang diharapkan untuk beroperasi secara bersamaan.
 +
 
 +
 
 +
Kabel
 +
 
 +
Pada saat anda sudah mengetahui jumlah panel surya dan baterai, dan macam regulator dan inverter yang anda ingin gunakan, adalah perlu untuk memperhitungkan panjang dan ketebalan kabel yang diperlukan untuk menyambung berbagai bagian tersebut menjadi satu.
 +
 
 +
Panjang kabel bergantung pada lokasi instalasi anda. Anda sebaiknya berusaha meminimalkan  panjang kabel antara pengatur, panel surya, dan baterai. Memakai kabel pendek akan mengurangi kehilangan daya dan biaya kabel.
 +
 
 +
Ketebalan kabel dipilih berdasarkan panjang kabel dan arus maksimum yang harus diteruskannya. Tujuannya adalah meminimalisir penurunan tegangan. Untuk dapat menghitung ketebalan S kabel, perlu untuk mengetahui:
 +
 
 +
Arus maksimum IMC yang akan melalui kabel. Dalam kasus sub-sistem baterai-panel, adalah ImMAX yang diperhitungkan untuk setiap bulan. Dalam sub-sistem beban-baterai ImMax bergantung pada bagaimana caranya beban disambung.
 +
Penurunan tegangan (Va-Vb) yang kita anggap dapat diterima dalam kabel. Penurunan tegangan yang merupakan hasil dari penambahan semua penurunan yang mungkin diungkapkan sebagai persen tegangan nominal instalasi. Nilai umum maksimum ialah:
 +
 +
Komponen
 +
Penurunan tegangan (% VN)
 +
Panel Array -> Battery
 +
1%
 +
Battery -> Converter
 +
1%
 +
Main Line
 +
3%
 +
Main Line (Illumination)
 +
3%
 +
Main Line (Equipment)
 +
5%
 +
                                                       
 +
 
 +
 
 +
Penurunan Tegangan Yang Dapat di Terima di Kabel
 +
 
 +
Bagian kabel ditentukan oleh hukum Ohm:
 +
 
 +
        S(mm2) = r( Ωmm2/m)L(m) ImMAX(A)/ (Va-Vb)(V)
 +
 
 +
Di mana S adalah bagian kabel, r  ialah resistivitas (karakteristik internal bahan: untuk tembaga, 0,01286 Ωmm2/m), dan L adalah panjang kabel.
 +
 
 +
S dipilih dengan mempertimbangkan kabel yang ada di pasar. Anda sebaiknya memilih bagian yang jauh lebih baik daripada apa yang didapatkan dari rumus. Karena alasan keamanan ada nilai minimum, untuk kabel yang menyambung panel dan baterai, nilai minimum adalah 6 mm2. Untuk bagian lain, minimumnya ialah 4 mm2.
 +
 
 +
 
 +
Biaya instalasi pembangkit listrik tenaga surya
 +
 
 +
Sementara daya surya sendiri gratis, namun tidak untuk peralatan yang diperlukan untuk mengubahnya menjadi daya listrik. Anda tidak hanya perlu membeli peralatan untuk mengubah daya surya menjadi listrik dan menyimpannya untuk penggunaan, tetapi anda juga harus mengganti dan memelihara berbagai bagian sistem. Masalah penggantian peralatan sering kali diabaikan, akhirnya sistem pembangkit listrik tenaga surya dijalankan tanpa rencana pemeliharaan yang baik.
 +
 
 +
Untuk memperhitungkan biaya sesungguhnya dari instalasi anda, kami berikan sebuah contoh ilustratif. Hal pertama yang harus dilakukan adalah memperhitungkan biaya investasi awal.
 +
 
 +
Deskripsi
 +
Jumlah
 +
Biaya satuan
 +
Subtotal
 +
Panel surya 60W (sekitar $4/W)
 +
4
 +
$300
 +
$1,200
 +
Regulator 30A
 +
1
 +
$100
 +
$100
 +
Kabel (meter)
 +
25
 +
$1/ meter
 +
$25
 +
Baterai 50Ah (deep cycle)
 +
6
 +
$150
 +
$900
 +
Total
 +
$2,225
 +
 +
Perhitungan biaya investasi kita relatif mudah ketika sistem sudah didimensikan. Anda hanya perlu menambahkan harga untuk masing-masing bagian peralatan dan biaya tenaga kerja untuk memasang dan menyambungkan peralatan menjadi satu. Untuk kesederhanaan, kita tidak memasukkan biaya angkut dan instalasi tetapi anda sebaiknya tidak mengabaikan mereka.
 +
 
 +
Untuk memahami berapa biaya sistem agar dapat beroperasi, kita harus memperkirakan seberapa lama tiap bagian akan berfungsi dan seberapa sering anda harus menggantinya. Dalam istilah akuntansi, ini dikenal sebagai amortisasi. Tabel baru kita terlihat seperti berikut ini:
 +
 
 +
Deskripsi
 +
#
 +
Biaya satuan
 +
Subtotal
 +
Umur (tahun)
 +
Biaya Tahunan
 +
Panel surya 60W
 +
4
 +
$300
 +
$1,200
 +
20
 +
$60
 +
Regulator 30A
 +
1
 +
$100
 +
$100
 +
5
 +
$20
 +
Kabel (meter) dengan ketebalan 50 Ah
 +
25
 +
$1/ meter
 +
$25
 +
10
 +
$2.50
 +
Baterai 50 Ah (deep cycle)
 +
6
 +
$150
 +
$900
 +
5
 +
$180
 +
 
 +
Total:
 +
$2,225
 +
Biaya tahunan:
 +
$262.50
 +
 
 +
Seperti yang anda lihat, ketika investasi pertama sudah dilakukan, akan ada biaya tahunan sebesar $262,50. Biaya tahunan adalah perkiraan kapital yang dibutuhkan setiap tahun untuk mengganti bagian sistem begitu umur kegunaan mereka berakhir.

Revision as of 18:06, 17 December 2008

7 Pembangkit daya surya (Solar Power)

Bab ini memperkenalkan komponen dari photovoltaic sistem yang mandiri (stand-alone photovoltaic system). Kata mandiri merujuk pada kenyataan bahwa sistem tersebut berfungsi tanpa ada sambungan jaringan daya manapun yang sudah ada. Di bab ini, kami akan memberikan konsep dasar pembangkitan dan penyimpanan daya surya photovoltaic. Kami juga akan menyediakan metode untuk mendesain sistem surya fungsionil dengan akses terbatas terhadap informasi dan sumber daya.

Bab ini hanya membicarakan penggunaan daya surya untuk produksi langsung listrik (energi surya photovoltaic atau solar energy photovoltaic). Daya surya juga bisa digunakan untuk memanaskan cairan (energi panas surya atau thermal solar energy) yang kemudian dapat digunakan sebagai sumber panas atau untuk memutar turbin untuk membangkitkan listrik. Sistem daya surya termal diluar pembahasan bab ini.


Energi surya

Sistem Photovoltaic berbasis pada kemampuan bahan tertentu untuk mengubah energi cahaya matahari menjadi daya listrik. Jumlah daya surya yang menyalakan suatu area tertentu diketahui sebagai penyinaran atau irradiance (G) dan diukur dalam watt per meter persegi (W/m2). Nilai seketika itu biasanya dirata-rata dalam suatu periode waktu, sehingga biasa disebut total penyinaran per jam, hari atau bulan.

Tentunya, jumlah radiasi yang akurat yang tiba di permukaan bumi tidak bisa diperkirakan dengan keakuratan yang tinggi, karena variasi cuaca alami. Oleh karena itu perlu untuk bekerja dengan data statistik berdasarkan "sejarah surya" pada suatu tempat. Data ini dikumpulkan oleh kantor pengamat cuaca dalam jangka waktu yang lama dan tersedia dari sejumlah sumber, berupa tabel atau database. Di kebanyakan kasus, bisa sulit menemukan informasi terperinci mengenai suatu daerah tertentu, dan anda harus bekerja dengan nilai perkiraan.

Beberapa organisasi sudah menghasilkan peta yang meliputi nilai rata-rata penyinaran global sehari-hari untuk daerah yang berbeda. Nilai ini diketahui sebagai Waktu Puncak Matahari atau Peak Sun Hours atau PSH. Anda bisa mempergunakan nilai PSH untuk daerah anda untuk menyederhanakan perhitungan anda. Satu kesatuan "tertinggi matahari" berhubungan dengan radiasi sebanyak 1000 Watt semeter persegi. Jika kita menemukan daerah tertentu itu mempunyai 4 PSH yang terburuk di antara bulan-bulan, itu berarti bahwa pada bulan itu kita sebaiknya tidak mengharapkan penyinaran harian lebih besar daripada 4000 W/m2 (hari). Penggunaan waktu matahari tertinggi adalah cara mudah untuk melambangkan rata-rata kasus penyinaran sehari yang paling buruk.

Peta PSH beresolusi rendah tersedia dari sejumlah sumber online, seperti http://www.solar4power.com/solar-power-global-maps.html. Untuk informasi yang lebih terperinci, konsultasikan dengan vendor lokal energi surya atau pengamat cuaca lokal.


Bagaimana dengan daya angin?

Adalah mungkin untuk menggunakan pembangkit listrik daya angin sebagai pengganti panel surya ketika sistem mandiri sedang didesain untuk instalasi di bukit atau gunung. Untuk menjadi efektif, kecepatan angin rata-rata dalam setahun sebaiknya sedikitnya 3 sampai 4 meter per detik, dan pembangkit listrik daya angin sebaiknya 6 meter lebih tinggi daripada benda lain dalam jarak 100 meter. Lokasi yang jauh dari pantai biasanya kurang cukup daya angin untuk mendukung sistem berdaya angin.

Secara umum, sistem photovoltaic lebih dapat diandalkan daripada pembangkit listrik daya angin, karena sinar matahari lebih tersedia daripada angin yang konsisten di kebanyakan tempat. Di sisi lain, pembangkit listrik berdaya angin dapat meng-charge baterai bahkan pada malam hari, selama ada angin yang cukup. Tentu saja mungkin untuk menggunakan angin bersama daya surya untuk membantu pada saat ada keadaan yang berawan, atau pada saat angin tidak cukup.

Untuk kebanyakan lokasi, biaya pembangkit listrik daya angin yang baik tidak dijustifikasi dengan sedikitnya daya yang ditambahkannya ke keseluruhan sistem. Bab ini maka akan fokus pada penggunaan panel surya untuk membangkitkan listrik.


Komponen sistem Photovoltaic

Dasar sistem photovoltaic terdiri dari empat komponen utama: panel surya (solar panel), baterai (batteries), regulator, dan beban (load). Panel bertanggung jawab untuk mengumpulkan daya matahari dan membangkitkan listrik. Baterai menyimpan daya listrik untuk penggunaannya nanti. Regulator menjamin panel dan baterai bekerja sama dalam model optimal. Beban merujuk pada alat apapun yang memerlukan daya listrik, dan merupakan jumlah konsumsi listrik dari semua peralatan listrik yang dihubungkan dengan sistem. Penting untuk diingat bahwa panel surya dan baterai menggunakan arus searah atau direct current (DC).

Jika jangkauan tegangan operasional peralatan anda tidak cocok dengan tegangan yang disediakan oleh baterai anda, anda perlu menggunakan converter untuk menyesuaikan tegangan. Jika peralatan anda menggunakan tegangan yang berbeda dengan tegangan baterai, anda perlu mengunakan konverter DC/DC (DC/DC converter). Jika sebagian dari peralatan anda memerlukan tegangan AC, maka anda perlu menggunakan konverter DC/AC (DC/AC converter), yang juga dikenal sebagai inverter.

Setiap sistem daya listrik sebaiknya memasukkan berbagai alat keamanan untuk mengantisipasi kekacauan. Alat ini meliputi perkabelan yang baik, sekering, proteksi perubahan tegangan (surge protector), sekering, pentanahan, penangkal petir, dll.


Panel surya (Solar Panel)

Panel surya (solar panel) terdiri dari sel surya yang mengumpulkan radiasi surya dan mengubahnya menjadi daya listrik. Bagian sistem ini kadang-kadang dinamakan modul surya (solar module) atau pembangkit listrik daya photovoltaic (photovoltaic generator). Sekumpulan panel surya dapat dibuat dengan menyambung sekumpulan panel dalam serial dan/atau paralel untuk menyediakan daya yang diperlukan untuk beban yang ada. Arus listrik yang disediakan oleh panel surya bervariasi secara proporsional terhadap radiasi surya. Ini akan bervariasi menurut kondisi iklim, jam, dan waktu pada suatu tahun.

Gambar 7.1: Panel surya (Solar panel)

Beberapa teknologi dapat digunakan dalam pembuatan sel surya. Yang paling banyak digunakan adalah kristal silicon, dan dapat berupa baik monocrystalline atau polycrystalline. Silikon amorphous (Amorphous silicon) bisa lebih murah tetapi lebih tidak efisien untuk mengubah daya surya ke listrik. Dengan waktu hidup yang berkurang dan efisiensi transformasi 6 sampai 8%, amorphous silicon biasanya digunakan untuk peralatan berdaya rendah, seperti kalkulator yang mudah dibawa. Teknologi surya baru, seperti silicon ribbon dan photovoltaics film tipis, sekarang ini dalam perkembangan. Teknologi ini menjanjikan efisiensi yang lebih tinggi tetapi belum tersedia secara luas.


Baterai (Battery)

Baterai menyimpan daya yang dihasilkan oleh panel surya yang tidak segera digunakan oleh beban. Daya yang disimpan dapat digunakan saat periode radiasi matahari rendah. Komponen baterai kadang-kadang dinamakan akumulator (accumulator). Baterai menyimpan listrik dalam bentuk daya kimia. Baterai yang paling biasa digunakan dalam aplikasi surya adalah baterai yang bebas pemeliharaan bertimbal asam (maintenance-free lead-acid batteries), yang juga dinamakan baterai recombinant atau VRLA (klep pengatur asam timbal atau valve regulated lead acid).


Gambar 7.2: Sebuah baterai bertimbal asam Ah 200. Terminal negatif rusak karena berat pada terminal selama transportasi.

Disamping menyimpan daya, baterai-baterai bertimbal asam yang disekat juga melayani dua fungsi penting:

Mereka dapat menyediakan daya seketika yang lebih kuat dibandingkan dengan apa yang dihasilkan oleh sekumpulan panel. Daya seketika ini diperlukan untuk memulai beberapa peralatan, seperti mesin kulkas atau pompa. Mereka menentukan tegangan operasi instalasi anda

Untuk instalasi daya kecil dan dimana keterbatasan ruang penting, jenis baterai lainnya (seperti NiCd, NiMh, atau Li-ion) dapat digunakan. Baterai seperti ini memerlukan charger/regulator yang khusus dan tidak dapat secara langsung digunakan untuk menggantikan baterai bertimbal asam.


Pengatur (Regulator)

Pengatur / Regulator (atau lebih formalnya pengatur penyimpanan daya surya atau Solar power charge regulator) memastikan bahwa baterai berkerja dalam kondisi yang seharusnya. Pengatur ini menghindari penyimpanan (charge) atau pengeluaran (discharge) baterai yang berlebihan, yang keduanya sangat merusak umur baterai. Untuk menjamin charging dan discharging baterai yang baik, pengatur tersebut menjaga informasi kondisi penyimpanan daya (State of Charge atau SoC) baterai. SoC diukur berdasarkan pada tegangan sebenarnya dari baterai. Dengan mengukur tegangan baterai dan diprogram dengan tipe teknologi penyimpanan yang digunakan oleh baterai, pengatur bisa mengetahui titik tepat di mana baterai akan mengalami charge atau discharge yang berlebihan.

Gambar 7.3: Pengontrol penyimpanan daya surya 30 Ampere

Pengatur dapat meliputi fitur lain yang menambahkan informasi berharga dan keamanan kontrol kepada peralatan. Fitur ini termasuk amperemeter, voltmeter, pengukuran ampere-jam, pengatur waktu, alaram, dll. Walaupun terkesan nyaman, tidak satupun dari fitur ini diperlukan untuk photovoltaic sistem yang berfungsi.


Konverter (Converter)

Listrik yang disediakan oleh sekumpulan panel dan baterai adalah DC pada tegangan yang tetap. Tegangan yang disediakan mungkin tidak sesuai dengan apa yang diperlukan oleh beban anda. Sebuah konverter DC/AC, yang juga dikenal sebagai inverter, mengubah arus DC dari baterai anda menjadi AC. Ini diikuti dengan kehilangan suatu daya selama konversi. Jika perlu, anda juga dapat menggunakan konverter untuk mendapatkan DC di tingkat tegangan yang berbeda dengan apa yang disediakan oleh baterai. Konverter DC/DC juga kehilangan suatu daya selama konversi. Untuk pelaksanaan optimal, anda sebaiknya mendesain sistem anda yang berdaya surya agar sesuai dengan tegangan DC yang dihasilkan agar sesuai dengan beban.


Gambar 7.4: Sebuah konverter DC/AC 800 Watt (inverter daya)

Beban (Load)

Beban adalah peralatan yang mengkonsumsi daya yang dihasilkan oleh sistem daya anda. Beban mungkin termasuk peralatan komunikasi nirkabel, router, meja bekerja, lampu, set TV, modem VSAT, dll. Walaupun tidak mungkin secara persis memperhitungkan jumlah persis konsumsi peralatan anda, sangat penting untuk membuat perkiraan yang baik. Dalam sistem sejenis ini, sangatlah penting untuk mempergunakan peralatan yang efisien dan berdaya rendah untuk menghindari daya yang terbuang.


Menyatukan semua menjadi satu kesatuan

Sistem photovoltaic yang lengkap memasukkan semua dari bagian-bagian ini. Panel-panel surya membangkitkan daya kalau daya surya tersedia. Pengatur memastikan operasi panel-panel yang paling efisien dan mencegah kerusakan terhadap baterai. Bank baterai mengumpulkan daya untuk penggunaan kemudian. Konverter dan inverter menyesuaikan daya yang disimpan agar sama dengan keperluan beban anda. Akhirnya, beban memakan daya yang disimpan untuk melakukan pekerjaan. Sewaktu semua bagian dalam keseimbangan dan terjaga secara baik, sistem akan dapat mendukung dirinya sendiri bertahun-tahun.


Gambar 7.5: Sebuah instalasi solar dengan beban DC dan AC

Kita sekarang akan melihat lebih dekat setiap komponen photovoltaic secara seksama


Panel surya

Sebuah panel surya terbuat dari banyak sel surya. Sel tersambung secara elektrik untuk memberikan arus dan tegangan tertentu. Masing-masing sel di enkapsulasi untuk mengisolasi dan melindungi dari kelembaban dan korosi.

Gambar 7.6: Akibat dari air dan karat pada panel surya

Ada beda tipe modul yang tersedia di pasaran, tergantung pada kebutuhan daya aplikasi anda. Modul yang paling umum digunakan terbuat dari 32 atau 36 crystalline silicon sel surya. Sel-sel ini berukuran sama, tersambung secara seri, dan terbungkus diantara bahan kaca dan plastik, menggunakan polymer resin (EVA) sebagai insulator termal (thermal insulator). Bagian muka modul biasanya antara 0,1 dan 0,5 m2. Panel surya biasanya memiliki dua kontak listrik, satu positif dan satu negatif.

Beberapa panel menyertakan kontak ekstra yang memungkinkan instalasi dioda penyingkat atau bypass diode di antara masing-masing sel. Dioda ini melindungi panel dari gejala yang dikenal sebagai “hot-spots”. Sebuah hot spot terjadi ketika beberapa sel berada dalam bayangan sedangkan sisa panel berada di bawah matahari penuh. Daripada menghasilkan daya, sel yang terteduh bertingkah laku sebagai beban yang membuang daya. Dalam situasi ini, sel yang terteduh dapat mengalami peningkatan suhu yang luar biasa (sekitar 85 sampai 100 derajat Celsius.) Dioda penyingkat akan mencegah hot spot di sel yang terteduh, tetapi mengurangi tegangan maksimum panel. Mereka sebaiknya hanya digunakan kalau peneduhan tak dapat dielakkan. Adalah solusi yang jauh lebih baik untuk menggelar seluruh panel di bawah matahari penuh sebisa mungkin.

Gambar 7.7: Kurva IV yang berbeda. Arus (A) berubah dengan penyinaran, dan voltase (V) berubah dengan suhu

Kinerja modul surya yang direpresentasikan oleh kurva karakteristik IV atau IV characteristic curve, yang merepresentasikan arus yang disediakan berdasarkan tegangan yang ditimbulkan oleh tingkat radiasi surya tertentu.

Kurva merepresentasikan semua nilai tegangan-arus yang mungkin. Kurva bergantung pada dua faktor utama: suhu dan radiasi surya yang diterima oleh sel. Untuk sebuah area sel surya, arus yang dihasilkan secara langsung sebanding dengan penyinaran surya (G), sedangkan tegangan berkurang dengan kenaikan suhu. Sebuah pengatur yang baik akan berusaha memaksimalkan jumlah daya yang disediakan oleh panel dengan mengikuti titik yang menyediakan daya maksimum (V x I). Daya maksimum berkaitan dengan lutut kurva IV


Parameter panel surya

Parameter utama yang mengkarakterisasi panel photovoltaic adalah:

1.ARUS SIRKUIT PENDEK atau SHORT CIRCUIT CURRENT (ISC): arus maksimum yang disediakan oleh panel waktu konektor mengalami sirkuit pendek.

2.TEGANGAN SIRKUIT TERBUKA atau OPEN CIRCUIT VOLTAGE (VOC): tegangan maksimum yang disediakan oleh panel ketika terminal tidak dihubungkan pada beban sama sekali (kontak terbuka). Nilai ini biasanya 22 V untuk panel-panel yang bekerja di sistem 12 V, dan secara langsung proporsional dengan sejumlah sel yang tersambung dalam serial.

3.TITIK DAYA MAKSIMUM atau MAKSIMUM POWER POINT (Pmax): titik dimana daya yang disediakan oleh panel berada di titik maksimum, dimana Pmax = Imax x Vmax. Titik daya maksimum panel diukur dalam Watt (W) atau Watt tertinggi (Wp). Penting untuk tidak lupa bahwa dalam kondisi normal, panel akan tidak dapat bekerja pada kondisi tertinggi, karena tegangan operasi ditetapkan oleh beban atau pengatur. Nilai umum Vmax dan Imax sebaiknya sedikit lebih rendah daripada ISC dan VOC.

4.FAKTOR PENGISI atau FILL FACTOR (FF): hubungan antara daya maksimum sesungguhnya yang dapat disediakan oleh panel dengan perkalian ISC x VOC. Ini memberikan anda gambaran kualitas panel karena ini adalah indikasi tipe kurva karakteristik IV. Semakin dekat FF kepada 1, semakin banyak daya yang dapat diberikan oleh panel. Nilai umum biasanya berkisar antara 0,7 dan 0,8.

5.EFISIENSI atau EFFICIENCY (h): rasio antara daya listrik maksimum yang dapat diberikan oleh panel kepada beban dan daya dari radiasi surya (PL) yang masuk ke panel. Ini biasanya sekitar 10-12%, tergantung pada tipe sel (monocrystalline, polycrystalline, amorphous atau film tipis).

Mempertimbangkan definisi titik daya maksimum dan faktor pengisi, kita dapat melihat bahwa:

h = Pmax / PL = FF . ISC . VOC / PL

Nilai ISC, VOC, IPmax dan VPmax disediakan oleh pabrik dan merujuk pada kondisi standar pengukuran dengan penyinaran G = 1000 W/m2, pada ketinggian permukaan laut, untuk suhu sel Tc = 25oC.

Nilai parameter panel berubah jika penyinaran dan suhu berbeda. Vendor kadang-kadang akan memasukkan grafik atau tabel dengan nilai untuk kondisi yang berbeda dari yang standar. Anda sebaiknya memeriksa nilai kinerja di suhu panel yang mungkin akan sesuai dengan instalasi anda.

Perhatikan bahwa dua panel bisa mempunyai Wp yang sama tetapi berbeda tingkah laku dalam kondisi operasi yang berbeda. Ketika memperoleh panel, adalah penting untuk mengecek, jika memungkinkan, bahwa parameter mereka (setidaknya, ISC dan VOC) sesuai dengan nilai yang dijanjikan oleh vendor.


Parameter panel untuk menentukan ukuran sistem

Untuk menghitung jumlah panel-panel yang diperlukan untuk mengcover beban yang ada, anda hanya perlu mengetahui arus dan tegangan di titik daya maksimum: IPmax dan VPmax.

Anda sebaiknya waspada bahwa panel tidak akan beroperasi dalam kondisi sempurna karena beban atau pengaturan tidak selalu berfungsi pada titik daya maksimum panel. Anda sebaiknya mengasumsikan kehilangan efisiensi sebanyak 5% dalam perhitungan anda untuk mengkompensasi ini.


Penyambungan panel-panel surya

Sekumpulan panel surya atau solar panel array adalah sekumpulan panel-panel surya yang secara elektrik saling tersambung dan terpasang pada semacam struktur penopang. Menggunakan sekumpulan panel surya memungkinkan anda untuk membangkitkan tegangan dan arus yang lebih besar daripada apa yang mungkin dibangkitkan oleh satu panel surya. Panel-panel saling tersambung sedemikian rupa bahwa tegangan yang dihasilkan berdekatan dengan (namun lebih besar daripada) tegangan baterai, dan bahwa arus yang dihasilkan cukup untuk menghidupkan peralatan dan untuk mengisi baterai.

Menyambung panel-panel surya dalam konfigurasi seri akan meningkatkan tegangan yang dihasilkan. Menyambung panel-panel dalam konfigurasi paralel akan meningkatkan arus. Jumlah panel-panel yang digunakan sebaiknya ditambah sampai banyaknya daya yang dibangkitkan sedikit melebihi kebutuhan beban anda.

Adalah sangat penting bahwa semua panel dalam array anda seidentik mungkin. Dalam array, anda sebaiknya menggunakan panel-panel bermerek dan berkarakteristik yang sama karena perbedaan sedikit dalam kondisi operasi mereka akan mempunyai dampak besar pada kesehatan dan kinerja sistem anda. Bahkan panel-panel yang mempunyai penilaian kinerja yang sama biasanya akan menunjukkan suatu varian dalam sifat mereka karena proses pembuatan. Sifat operasi sesungguhnya dari dua panel dari vendor yang sama dapat bervariasi sampai ±10%.

Jika dimungkinkan, adalah gagasan yang baik untuk menguji kinerja nyata panel-panel individu untuk mengecek karakteristik operasi mereka sebelum mengumpulkan mereka ke dalam array.

Gambar 7.8: Sambungan panel-panel yang paralel. Tegangan tetap konstan sedangkan arus berduplikasi. (Foto: Fantsuam Foundation, Nigeria)


Bagaimana caranya untuk memilih panel yang baik

Salah satu ukuran yang digunakan pada saat berbelanja panel-panel surya adalah membandingkan rasio nominal daya tertinggi (Wp) terhadap harganya. Ini akan memberi anda ide secara garis besar biaya per Watt untuk panel-panel yang berbeda. Akan tetapi ada sejumlah pertimbangan lain yang juga harus diingat.

Jika anda berniat untuk menginstal panel-panel surya di daerah geografis dimana kotoran (dari debu, pasir, atau kerikil halus) akan mungkin menjadi masalah, pertimbangkanlah pembelian panel-panel dimana tanah tidak terlalu suka menempel. Panel-panel ini terbuat dari bahan yang dapat membersihkan panel secara otomatis oleh angin dan hujan.

Periksa konstruksi mekanis masing-masing panel. Cek bahwa kaca dikeraskan dan bingkai aluminium kuat dan terbuat secara kokoh. Sel surya di dalam panel dapat bertahan selama lebih dari 20 tahun, tetapi mereka sangat mudah pecah dan panel harus dapat melindungi diri mereka sendiri dari bahaya mekanis. Cari garansi pabrik terutama untuk daya keluaran panel dan konstruksi mekanik panel.

Akhirnya, pastikanlah bahwa pabrik menyediakan tidak hanya daya tertinggi nominal panel (Wp) tetapi juga variasi daya dengan penyinaran dan suhu. Ini benar-benar penting kalau panel-panel digunakan dalam array, sebab variasi dalam parameter operasi dapat berdampak besar pada kualitas daya yang ditimbulkan dan umur kegunaan panel-panel.


Baterai

Baterai “menyimpan” reaksi kimia yang dapat dibalikkan yang menyimpan daya listrik yang nantinya dapat dipulihkan pada saat diperlukan. Daya listrik berubah menjadi daya kimia ketika baterai diisi, dan proses kebalikkannya terjadi pada saat baterai mengeluarkan daya.

Baterai terbentuk oleh sekelompok elemen atau sel yang diletakan secara seri. Baterai timbal-asam terdiri dari dua elektroda timbal yang berada dalam larutan elektrolit air dan asam sulfat. Perbedaan potensial sekitar 2 volt terjadi di antara elektroda, tergantung pada nilai seketika kondisi penyimpanan baterai. Baterai yang paling umum dalam aplikasi surya fotovoltaik mempunyai tegangan nominal sebanyak 12 atau 24 volt. Maka sebuah baterai 12 V berisi 6 sel secara seri.

Baterai memenuhi dua tujuan penting dalam sistem fotovoltaik: untuk memberikan daya listrik kepada sistem ketika daya tidak disediakan oleh array panel-panel surya, dan untuk menyimpan kelebihan daya yang ditimbulkan oleh panel-panel setiap kali daya itu melebihi beban. Baterai tersebut mengalami proses siklis menyimpan dan mengeluarkan, tergantung pada ada atau tidak adanya sinar matahari. Selama waktu adanya matahari, array panel menghasilkan daya listrik. Daya yang tidak digunakan dengan segera dipergunakan untuk mengisi baterai. Selama waktu tidak adanya matahari, permintaan daya listrik disediakan oleh baterai, yang oleh karena itu akan mengeluarkannya.

Siklus menyimpan dan mengeluarkan ini terjadi setiap kali daya yang dihasilkan oleh panel tidak sama dengan daya yang dibutuhkan untuk mendukung beban. Kalau ada cukup matahari dan bebannya ringan, baterai akan menyimpan daya. Tentunya, baterai akan mengeluarkan daya pada malam hari setiap kali sejumlah daya diperlukan. Baterai juga akan mengeluarkan daya ketika penyinaran tidak cukup untuk menutupi kebutuhan beban (karena variasi alami kondisi keikliman, awan, debu, dll. )

Jika baterai tidak menyimpan cukup daya untuk memenuhi permintaan selama periode tidak adanya matahari, sistem akan kehabisan daya dan tidak siap memenuhi konsumsi. Di sisi lainnya, memperbesar sistem (dengan menambahkan terlalu banyak panel dan baterai) mahal dan tidak efisien. Ketika mendesain sistem yang mandiri, kita perlu mengkompromikan antara biaya komponen dengan ketersediaan daya dari sistem. Satu cara untuk melakukan ini adalah memperkirakan jumlah hari dimana sistem beroperasi secara mandiri atau number of days of autonomy. Dalam kasus sistem telekomunikasi, jumlah hari-hari otonomi bergantung pada fungsi kritisnya dalam bentuk jaringan anda. Jika peralatan akan berfungsi sebagai repeater dan merupakan bagian tulang punggung jaringan anda, anda mungkin harus mendesain sistem fotovoltaik anda dengan otonomi sampai 5-7 hari.

Sebaliknya, jika sistem surya bertanggung jawab atas daya yang menyediakan ke peralatan pelanggan anda mungkin dapat mengurangi jumlah hari otonomi sampai dua atau tiga. Di daerah dengan penyinaran yang rendah, nilai ini mungkin perlu ditambah semakin banyak. Dalam kasus apapun, anda harus selalu menemukan keseimbangan yang baik antara biaya dan kehandalan.


Macam baterai

Banyak teknologi baterai yang tersedia, dan dimaksudkan untuk penggunaan dalam berbagai jenis aplikasi yang berbeda. Jenis yang paling cocok untuk aplikasi fotovoltaik adalah baterai yang tak bergerak (stationary battery), yang didesain untuk mempunyai lokasi tetap dan untuk skenario dimana pemakaian daya tidak teratur. Baterai yang "tidak bergerak" dapat mengakomodasi siklus pengeluaran yang dalam, tetapi mereka tidak didesain untuk menghasilkan arus tinggi dalam periode waktu yang singkat.

Baterai yang tidak bergerak dapat menggunakan elektrolit seperti alkali (seperti Nickel-Cadmium) atau asam (seperti Lead-Acid). Baterai yang tidak bergerak berdasarkan Nickel-Cadmium sebisa mungkin direkomendasikan menurut kehandalan dan ketahanan mereka yang tinggi. Sayangnya, mereka cenderung menjadi jauh lebih mahal dan sulit untuk diperoleh daripada baterai timbal-asam yang disegel.

Di banyak kasus ketika sulit menemukan baterai yang tidak bergerak lokal yang baik dan murah (mengimpor baterai tidak murah), anda dikondisikan untuk memakai baterai (aki) yang dirancang untuk mobil.


Memakai baterai mobil

Baterai mobil tidak cocok untuk aplikasi fotovoltaik karena mereka didesain untuk memberikan arus besar hanya selama beberapa detik saja (ketika menyalakan mesin) daripada memberikan arus rendah untuk periode waktu yang lama. Karakteristik aki mobil ini (juga dinamakan baterai daya cengkeram atau traction batteries) menghasilkan sebuah kehidupan efektif yang pendek kalau dipakai di sistem fotovoltaik.

Baterai mobil dapat digunakan dalam aplikasi kecil dimana biaya rendah adalah pertimbangan yang paling penting, atau ketika baterai jenis lain tidak ada. Baterai mobil didesain untuk kendaraan dan gerobak tangan listrik. Mereka lebih murah daripada baterai yang tidak bergerak dan dapat melayani dalam sebuah instalasi fotovoltaik, walaupun mereka sering kali memerlukan pemeliharaan. Baterai ini tidak boleh terlalu banyak mengeluarkan dayanya, karena ini akan sangat secara luar biasa mengurangi kemampuan mereka untuk menyimpan daya. Sebuah baterai truk sebaiknya tidak mengeluarkan lebih dari 70% dari kapasitas totalnya. Ini berarti anda hanya bisa memakai maksimum 30% dari kapasitas nominal aki lead-acid sebelum aki tersebut harus diisi kembali.

Anda dapat memperpanjang umur baterai asam-timbal dengan menggunakan air sulingan. Dengan menggunakan densimeter atau hydrometer, anda dapat mengukur kepadatan elektrolit baterai tersebut. Sebuah aki pada umumnya mempunyai berat jenis 1,28. Menambahkan air sulingan dan merendahkan kepadatan ke 1,2 dapat membantu mengurangi korosi anoda, dengan biaya mengurangi kapasitas keseluruhan baterai. Jika anda menyesuaikan kepadatan baterai elektrolit, anda harus menggunakan air sulingan, karena air keran atau air tanah akan secara permanen merusak baterai.


Kondisi penyimpanan (State of Charge)

Ada dua kondisi istimewa penyimpanan yang dapat terjadi selama siklus penyimpanan dan pengeluaran daya dari baterai. Keduanya sebaiknya dihindari guna memperpanjang umur kegunaan baterai.


Penyimpanan yang berlebihan (Overcharge)

Penyimpanan yang berlebihan atau overcharge terjadi pada saat baterai berada pada kondisi keterbatasan kapasitasnya. Jika daya yang dimasukan di luar batas titik penyimpanan maksimum, elektrolit mulai hancur. Ini menghasilkan gelembung oksigen dan hidrogen, dalam proses yang diketahui sebagai pembuatan gas atau gasification. Ini berakibat hilangnya air, oksidasi di elektroda positif, dan dalam kasus ekstrim, terjadi bahaya ledakan.

Di sisi lainnya, keberadaan gas menghindari stratifikasi asam. Setelah beberapa siklus penyimpanan dan pengeluaran yang terus menerus, asam cenderung terpusat di bagian bawah baterai, sehingga mengurangi kapasitas efektifnya. Proses gasifikasi menggerakan elektrolit dan menghindari stratifikasi. Sekali lagi, adalah perlu untuk menemukan kompromi antara keuntungan (menghindari stratifikasi elektrolit) dan keadaan merugikan (kehilangan air dan produksi hidrogen). Satu pemecahannya adalah lebih sering membiarkan penyimpanan yang sedikit berlebihan. Satu metode yang umum adalah membiarkan tegangan sebanyak 2,35 sampai 2,4 Volt untuk masing-masing elemen baterai sekali dalam beberapa hari, di suhu 25o C. Regulator sebaiknya menjamin penyimpanan berlebihan yang berkala dan terkontrol.


Pengeluaran daya yang berlebihan (Overdischarge)

Dengan cara yang sama dimana ada batas atas, ada juga batas bawah dari kondisi penyimpanan baterai. Mengeluarkan melebihi batas itu akan menimbulkan pengrusakan pada baterai. Ketika persediaan baterai yang efektif habis, pengatur mencegah daya yang tersisa agar tidak diambil dari baterai. Kalau tegangan baterai mencapai batas minimum 1,85 Volt setiap selnya di suhu 25° C, pengatur memutuskan beban dari baterai.

Jika pengeluaran baterai sangat mendalam dan baterai tetap dalam kondisi pengeluaran untuk jangka waktu yang lama, akan terjadi tiga efek: pembentukan sulfat yang terkristal pada pelat baterai, bahan aktif pada pelat baterai akan lepas / berguguran, dan pelat baterai akan melengkung. Proses membentuk kristal sulfat yang stabil dinamakan sulfasi keras. Ini benar-benar tidak baik karena akan membentuk kristal besar yang tidak turut serta dalam reaksi kimia dan dapat membuat baterai anda tidak dapat digunakan.


Parameter baterai

Parameter utama sebuah baterai adalah:

Tegangan Nominal atau Nominal voltage, VNBat. Nilai yang paling umum adalah 12 V. Kapasitas Nominal atau Nominal Capacity, CNBat: jumlah daya maksimum yang dapat diambil dari sebuah baterai yang terisi penuh. Ini diekspresikan dalam Ampere-jam (Ah) atau Watt-jam (Wh). Banyaknya daya yang bisa didapatkan dari baterai bergantung pada waktu dimana proses ekstraksi terjadi. Mengeluarkan daya baterai dalam jangka waktu lama akan menghasilkan lebih banyak daya dibandingkan dengan mengeluarkan daya baterai dalam jangka waktu yang singkat. Kapasitas baterai oleh sebab itu dispesifikasi di waktu pengeluaran daya yang berbeda. Untuk aplikasi fotovoltaik, waktu ini sebaiknya lebih lama daripada 100 jam (C100). Maximum Depth of Discharge, DoDmax: Kedalaman pengeluaran daya adalah banyaknya daya yang diambil dari baterai dalam satu siklus pengeluaran daya, yang diekspresikan sebagai persentase. Umur baterai bergantung pada seberapa dalam pengeluaran daya itu terjadi dalam masing-masing siklus. Pabrik sebaiknya menyediakan grafik yang mengkaitkan jumlah siklus penyimpanan-pengeluaran daya dengan umur baterai. Sebagai kadiah umum anda sebaiknya menghindari pengeluaran daya baterai siklus yang dalam yang melebihi 50%. Baterai mobil sebaiknya hanya dikeluarkan dayanya sebanyak sekecil-kecilnya 30%. Kapasitas Berguna atau Useful Capacity, CUBat: adalah yang kapasitas baterai sesungguhnya (yang dapat digunakan). CUBat setara dengan perkalian kapasitas nominal dan DoD maksimum. Misalnya, kapasitas nominal baterai yang tak bergerak (C100) 120 Ah dan kedalaman pengeluaran daya sebanyak 70% mempunyai kapasitas berguna (120 x 0,7) 84 Ah.


Mengukur kondisi penyimpanan daya baterai

Baterai timbal-asam 12 V yang disekat menyediakan tegangan yang berbeda tergantung pada kondisi penyimpanan dayanya. Ketika baterai penuh dengan daya dalam sebuah sirkuit terbuka, tegangan output adalah sekitar 12,8 V. Tegangan output turun dengan cepat sampai 12,6 V ketika terdapat beban. Pada saat baterai menyediakan arus yang konstan selama operasi, tegangan baterai berkurang secara linear dari 12,6 ke 11,6 V tergantung pada kondisi penyimpanan daya. Baterai timbal-asam yang disekat memberikan 95% dari dayanya dalam tegangan ini. Jika kita membuat asumsi yang lebih luas bahwa baterai yang sepenuhnya terisi mempunyai tegangan 12,6 V pada saat "penuh" dan 11,6 V pada saat "kosong", kita dapat memperkirakan bahwa baterai sudah mengeluarkan 70% ketika baterai mencapai tegangan 11,9 V. Nilai ini hanyalah perkiraan kasar karena mereka bergantung pada umur dan kualitas baterai, suhu, dll.


Kondisi penyimpanan 12 V Battery Voltage Volts per Cell 100% 12,7 2,12 90% 12,5 2,08 80% 12,42 2,07 70% 12,32 2,05 60% 12,2 2,03 50% 12,06 2,01 40% 11,9 1,98 30% 11,75 1,96 20% 11,58 1,93 10% 11,31 1,89 0% 10,5 1,75

Menurut tabel ini, dan mempertimbangkan bahwa baterai truk sebaiknya tidak dikeluarkan dayanya lebih dari 20% sampai 30%, kita dapat menentukan bahwa kapasitas berguna baterai truk 170 Ah adalah 34 Ah (20%) ke 51 Ah (30%). Dengan menggunakan tabel yang sama, kita menyadari bahwa kita sebaiknya memprogram pengatur untuk mencegah baterai dari mengeluarkan daya di bawah 12,3 V.


Perlindungan baterai dan pengatur

Pemutus sambungan Thermomagnetic atau sekering sekali pakai harus digunakan untuk melindungi baterai dan instalasi dari arus sirkuit pendek dan kerusakan. Ada dua macam sekering: slow blow, dan quick blow. Sekering slow blow sebaiknya digunakan dengan muatan induktif atau kapasitif dimana arus tinggi dapat terjadi pada start / penyalaan pertama kali. Slow blow akan mengijinkan arus yang lebih tinggi daripada nilai ideal mereka untuk berlalu dalam waktu singkat. Sekering quick blow akan langsung hangus jika arus yang mengalir lewat mereka lebih tinggi daripada nilai ideal mereka.

Pengatur dihubungkan dengan baterai dan beban, sehingga dua jenis perlindungan yang berbeda perlu dipertimbangkan. Sebuah sekering sebaiknya ditempatkan di antara baterai dan pengatur, untuk melindungi baterai dari korsleting jika terjadi kegagalan regulator. Sekering kedua diperlukan untuk melindungi regulator dari arus beban yang berlebihan. Sekering kedua ini biasanya diintegrasikan ke dalam pengatur itu sendiri.

Gambar 7.9: bank baterai 3600 Ah, arus mencapai tingkat 45 A selama penyimpanan daya

Setiap sekering dinilai dengan arus maksimum dan tegangan maksimum yang dapat digunakan. Arus maksimum sekering sebaiknya 20% lebih besar daripada arus maksimum yang diperkirakan. Sekalipun baterai membawa tegangan rendah, arus sirkuit pendek dapat menimbulkan arus yang sangat tinggi yang dengan mudah dapat mencapai beberapa ratus ampere. Arus besar dapat menimbulkan kebakaran, merusak peralatan dan baterai, dan mungkin mengejutkan badan manusia.

Jika sekering rusak, jangan pernah mengganti sekering dengan sehelai kawat atau sekering yang lebih baik. Tentukan terlebih dulu sebabnya, lalu ganti sekering dengan yang sama.


Efek temperatur

Suhu ambien mempunyai beberapa efek penting pada sifat baterai:

Kapasitas nominal baterai (yang biasanya diberikan oleh pabrik untuk 25°C) meningkat dengan suhu pada laju di sekitar 1%/°C. Namun jika suhu terlalu tinggi, reaksi kimia yang terjadi dalam baterai melaju, yang dapat menimbulkan tipe oksidasi yang sama yang terjadi selama penyimpanan daya yang berlebihan. Ini secara nyata akan mengurangi perkiraan umur baterai. Masalah ini dapat dikompensasi sebagian dalam baterai mobil dengan menggunakan disolusi berkepadatan rendah (berat jenis 1,25 ketika baterai terisi penuh). Pada saat suhu berkurang, umur kegunaan baterai bertambah. Namun jika suhu terlalu rendah, anda menghadapi resiko pembekuan elektrolit. Suhu yang sangat dingin bergantung pada kepadatan solusi, yang juga berhubungan dengan kondisi penyimpanan daya baterai. Semakin rendah kepadatan, semakin besar resiko pembekuan. Di daerah bersuhu rendah, anda sebaiknya menghindari mengeluarkan daya baterai secara mendalam (yaitu, DoDmax dikurangi secara efektif. ) Suhu juga mengubah hubungan antara tegangan dan penyimpanan daya. Adalah lebih baik untuk menggunakan regulator yang mengatur parameter penyambungan dan pemutusan tegangan rendah menurut suhu. Sensor suhu regulator sebaiknya dipasang pada baterai menggunakan selotip atau suatu metode sederhana lainnya. Pada daerah panas adalah sangat penting untuk menjaga baterai agar tetap sesejuk mungkin. Baterai harus disimpan di tempat teduh dan tidak pernah mendapat sinar matahari langsung. Sebaiknya baterai diletakkan pada penyanggah kecil untuk membiarkan udara mengalir di bawah mereka, dengan begitu meningkatkan pendinginan.


Bagaimana caranya untuk memilih baterai yang baik

Memilih baterai yang baik dapat menjadi tantangan di negara berkembang. Baterai berkapasitas tinggi biasanya berat, besar dan mahal untuk diimpor. Sebuah baterai 200 Ah memiliki berat sekitar 50 kg (120 pon) dan tidak bisa diangkut sebagai bagasi tangan. Jika anda ingin baterai berumur panjang (misalnya > 5 tahun) dan pemeliharaan baterai gratis, bersiaplah untuk membayar harganya.

Baterai yang baik selalu tersedia dengan spesifikasi teknisnya, termasuk kapasitas laju pengeluaran daya yang berbeda (C20, C100), suhu operasi, batas titik tegangan, dan syarat untuk alat pengisi ulang.

Baterai harus terbebas dari keretakan, kebocoran cairan atau tanda kerusakan apapun, dan sambungan baterai sebaiknya terbebas dari korosi. Karena tes laboratorium dibutuhkan untuk melengkapi data mengenai kapasitas dan penuaan yang sesungguhnya, bersiaplah untuk menerima kenyataan bahwa banyak bateria bermutu rendah di pasar lokal. Harga biasanya (tidak termasuk pajak angkutan dan barang impor) $3-4 USD per Ah untuk baterai timbal-asam 12 V.


Ekspetasi umur versus banyaknya siklus

Baterai merupakan satu-satunya bagian sistem surya yang sebaiknya dibeli secara berkala dalam jangka waktu singkat dan secara teratur diganti. Anda dapat menambah umur kegunaan baterai dengan mengurangi kedalaman pengeluaran daya per siklus. Baterai bersiklus dalam pun akan mempunyai umur baterai yang bertambah jika jumlah siklus pengeluaran daya yang dalam (>30%) dikurangi.

Jika anda mengeluarkan daya baterai secara penuh setiap hari, anda biasanya akan perlu menggantinya setelah kurang dari satu tahun. Jika anda menggunakan hanya 1/3 kapasitas baterai, baterai tersebut dapat bertahan lebih dari 3 tahun. Akan menjadi lebih murah untuk membeli baterai dengan 3 kali kapasitasnya daripada mengganti baterai tersebut setiap tahun.


Regulator penyimpanan daya

Regulator penyimpanan daya juga dikenal sebagai pengontrol penyimpanan daya, pengatur tegangan, pengontrol penyimpanan-pengeluaran atau pengontrol penyimpanan-pengeluaran dan muatan. Regulator berada di antara array panel-panel, baterai, dan peralatan atau beban anda.

Ingatlah bahwa tegangan baterai, walaupun selalu dekat 2 V setiap selnya, bervariasi menurut kondisi penyimpanan dayanya. Dengan mengamati tegangan baterai, pengatur mencegah penyimpanan atau pengeluaran daya yang berlebihan.

Pengatur yang digunakan di aplikasi surya sebaiknya disambung dalam serial: mereka memutuskan array panel-panel dari baterai untuk menghindari penyimpanan daya yang berlebihan, dan mereka memutuskan baterai dari beban untuk menghindari pengeluaran daya yang berlebihan. Penyambungan dan pemutusan dilakukan oleh switch yang jenisnya bisa dua macam: electromechanical (relay) atau solid state (transistor bipolar, MOSFET). Pengatur tidak boleh sekali-sekali disambungkan secara paralel.

Guna melindungi baterai dari pembuatan gas, switch membuka sirkuit penyimpanan daya ketika tegangan dalam baterai mencapai pemutusan tegangan tingginya atau high voltage disconnect (HVD) atau titik batas yang ditentukan. Pemutusan tegangan rendah atau low voltage disconnect (LVD) mencegah baterai dari pengeluaran energi yang berlebihan dengan memutuskan atau menahan beban. Untuk mencegah hubungan penyambungan dan pemutusan yang terus-menerus, pengatur tidak akan menghubungkan beban kembali sampai baterai mencapai tegangan penyambungan kembali yang rendah atau low reconnect voltage (LRV).

Nilai umum untuk sebuah baterai timbal-asam 12 V adalah:

Titik tegangan tegangan LVD 11,5 LRV 12,6 tegangan konstan teregulasi 14,3 Penyamaan 14,6 HVD 15,5

Pengatur yang paling modern juga dapat secara otomatis memutuskan panel selama malam hari untuk menghindari pengeluaran daya baterai. Mereka juga dapat secara berkala menyimpan daya baterai yang berlebihan untuk meningkatkan umur mereka, dan mereka mungkin menggunakan mekanisme yang dikenal sebagai modulasi lebar nadi atau pulse width modulation (PWM) untuk mencegah gassing yang berlebihan.

Karena titik operasi daya puncak array panel akan bervariasi dengan suhu dan penerangan surya, pengatur yang baru mampu secara konstan melacak titik maksimum daya array surya. Fitur ini dikenal sebagai pelacakan titik daya maksimum atau maximum power point tracking (MPPT).


Parameter pengatur

Ketika memilih pengatur untuk sistem anda, anda sebaiknya setidaknya mengetahui tegangan operasi atau operating voltage dan arus maksimum atau maximum current yang bisa ditangani oleh pengatur. Tegangan operasi adalah 12, 24, atau 48 V. Arus maksimum harus 20% lebih besar daripada arus yang disediakan oleh array panel-panel yang tersambung dengan regulator

Fitur dan data yang menarik lainnya termasuk:

Nilai spesifik bagi LVD, LRV dan HVD. Dukungan untuk kompensasi suhu. Tegangan yang menunjukkan kondisi penyimpanan daya baterai bervariasi dengan suhu. Atas alasan ini beberapa pengatur dapat mengukur suhu baterai dan mengkoreksi nilai batas dan penyambungan kembali yang berbeda. Instrumentasi dan pengukur. Alat yang paling umum mengukur tegangan panel dan baterai, kondisi penyimpanan daya (SoC) atau kedalaman pengeluaran daya (DoD). Beberapa pengatur memasukkan alaram istimewa untuk menunjukkan bahwa panel-panel atau beban-beban sudah diputuskan, LVD atau HVD sudah dicapai, dll.


Konverter

Pengatur menyediakan daya DC di tegangan spesifik. Konverter dan inverter dipergunakan untuk mengatur tegangan agar sama dengan kebutuhan beban anda.


Konverter DC/DC

Konverter DC/DC mengubah tegangan DC menjadi tegangan DC lainnya dengan nilai yang berbeda. Ada dua metode konversi yang dapat dipergunakan untuk mengubah tegangan dari baterai: konversi linear atau linear conversion dan konversi peralihan atau switching conversion.

Konversi linear menurunkan tegangan dari baterai dengan mengubah kelebihan daya menjadi panas. Metode ini sangat sederhana namun pada kenyataannya tidak efisien. Konversi peralihan pada umumnya menggunakan komponen magnetik untuk menyimpan daya secara sementara dan mengubahnya menjadi tegangan lainnya. Tegangan yang dihasilkan bisa lebih besar, lebih rendah, atau kebalikan (negatif) daripada tegangan input.

Efisiensi pengatur linear berkurang dengan semakin banyaknya perbedaan antara tegangan input dan tegangan output. Misalnya, jika kita ingin mengubah dari 12 V ke 6 V, pengatur linear akan mempunyai efisiensi sebanyak hanya 50%. Pengatur peralihan standar mempunyai efisiensi sedikitnya 80%.


Konverter DC/AC atau Inverter

Inverter digunakan ketika peralatan anda memerlukan daya AC. Inverter memotong dan membalikkan arus DC untuk membangkitkan gelombang segi empat yang nantinya disaring menjadi gelombang sinus yang disesuaikan dan menghapus harmonik yang tidak diinginkan. Sangat sedikit inverter yang sebetulnya menyediakan gelombang sinus yang murni sebagai output. Kebanyakan model yang tersedia di pasar menciptakan apa yang diketahui sebagai "gelombang sinus yang termodifikasi", karena output tegangan mereka bukanlah sinusoid yang murni. Ketika kita memikirkan efisiensi, gelombang sinus yang termodifikasi berkinerja lebih baik daripada inverter sinusoidal yang murni.

Ketahuilah bahwa tidak semua peralatan akan menerima gelombang sinus yang termodifikasi sebagai tegangan input. Secara umum, beberapa printer laser tidak akan berkerja dengan gelombang sinus inverter yang termodifikasi. Mesin akan tetap berfungsi, tetapi mereka mungkin memakan lebih banyak daya daripada jika mereka diberi input dengan gelombang sinus murni. Selain itu, power supply DC cenderung semakin memanas, dan pengeras audio dapat mengeluarkan bunyi berdengung.

Disamping tipe bentuk gelombang, beberapa fitur penting inverter juga termasuk:

Kehandalan saat adanya sentakan. Inverter mempunyai dua penilaian daya: satu untuk daya yang terus-menerus, dan yang lebih tinggi untuk daya tertinggi. Mereka dapat menyediakan daya tertinggi untuk waktu yang sangat singkat, seperti ketika menghidupkan mesin. Inverter juga sebaiknya dapat secara aman menginterupsi dirinya sendiri (dengan sakelar pemutus (circuit breaker) atau sekering) seandainya terjadi arus sirkuti pendek, atau jika daya yang diminta terlalu tinggi. Efisiensi konversi. Inverter paling efisien ketika memberikan 50% sampai 90% dari rating daya terus-menerus mereka. Anda sebaiknya memilih inverter yang hampir sesuai dengan syarat beban anda. Pabrik biasanya menyediakan kinerja inverter di 70% dari daya nominalnya. Pengisian daya baterai. Banyak inverter juga memasukkan fungsi terbalik: kemungkinan mengisi daya baterai dari sebuah sumber arus AC (jaringan listrik, genset dll). Inverter tipe ini dikenal sebagai charger/inverter. Automati fail-over. Beberapa inverter dapat berpindah secara otomatis di antara sumber daya yang berbeda (jaringan listrik PLN, pembangkit daya listrik, surya) tergantung pada apa yang tersedia.

Ketika menggunakan peralatan telekomunikasi, sebaiknya menghindari penggunaan konverter DC/AC dan memberi daya kepada mereka secara langsung dari sebuah sumber DC. Kebanyakan peralatan komunikasi dapat menerima tingkatan input tegangan yang cukup lebar.


Peralatan atau beban

Sangatlah nyata bahwa pada saat keperluan daya bertambah, bertambah pula pengeluaran biaya sistem fotovoltaik. Maka sangatlah penting untuk menyamakan ukuran sistem sesama mungkin dengan beban yang ada. Ketika mendesain sistem, anda terlebih dulu harus membuatkan perkiraan realistis konsumsi maksimum. Ketika instalasi sudah terpasang, tingkat konsumsi maksimum yang sudah ditentukan harus dipatuhi untuk menghindari sering terjadinya pemadaman listrik.


Peralatan rumah

Penggunaan daya surya fotovoltaik tidak dianjurkan untuk aplikasi penukaran panas (pemanas listrik, kulkas, pemanggang roti, dll. ) Sebisa mungkin, daya sebaiknya digunakan dengan hemat memakai peralatan berdaya rendah. Ini beberapa hal yang perlu diingat ketika memilih peralatan yang pas untuk penggunaan dengan sistem surya:

Daya surya fotovoltaik cocok untuk penerangan. Dalam kasus ini, penggunaan bola lampu halogen atau lampu berpendar (fluorescent) adalah suatu keharusan. Walaupun lampu ini lebih mahal, mereka mempunyai efisiensi daya yang lebih baik daripada bola lampu ringan yang pijar (incandescent). Lampu LED juga merupakan pilihan yang baik karena mereka sangat efisien dan diberi input daya DC. Adalah mungkin untuk menggunakan daya fotovoltaik untuk peralatan yang memerlukan konsumsi rendah dan terus-menerus (seperti dalam kasus yang umum, televisi). Televisi kecil akan menggunakan daya yang lebih sedikit daripada televisi besar. Juga pertimbangkan bahwa televisi hitam putih mengkonsumsi sekitar setengah daya televisi berwarna. Daya surya fotovoltaik tidak dianjurkan untuk aplikasi apapun yang mengubah daya menjadi panas (daya termal). Gunakanlah pemanasan surya atau LPG sebagai alternatif. Mesin cuci otomatis yang biasa dapat digunakan, tetapi anda sebaiknya menghindari penggunaan program mencuci apapun yang terdapat pemanasan air terpusat. Jika anda harus menggunakan kulkas, kulkas tersebut sebaiknya mengkonsumsi daya sesedikit mungkin. Ada kulkas yang khusus yang bekerja di DC, walaupun konsumsi mereka bisa cukup tinggi (sekitar 1000 Wh/hari).

Estimasi konsumsi total adalah langkah pokok dalam menentukan besaran ukuran sistem surya anda. Berikut ini adalah tabel yang memberi anda gagasan umum pemakaian daya yang bisa anda perkirakan dari peralatan yang berbeda.

Peralatan Konsumsi (Watt) Portable computer 30-50 Low power lamp 6-10 WRAP router (one radio) 4-10 VSAT modem 15-30 PC (tanpaLCD) 20-30 PC (dengan LCD) 200-300 Network Switch (16 port) 6-8


Peralatan telekomunikasi nirkabel

Menghemat daya dengan memilih peralatan yang sesuai menekan pengeluaran dan mengurangi kesulitan. Misalnya, hubungan jarak jauh tidak terlalu memerlukan amplifier yang kuat yang menggunakan banyak daya. Sebuah kartu Wi-Fi dengan kepekaan receiver yang baik dan zona fresnel sedikitnya 60% jelas akan berfungsi lebih baik daripada amplifier, dan juga menghemat penggunaan daya. Pepatah tenar amatir radio juga berlaku di sini: amplifier terbaik adalah antena yang baik. Tindakan lebih lanjut untuk mengurangi pemakaian daya termasuk menambah kecepatan CPU, mengurangi daya pancar sampai ke nilai minimum yang cukup untuk memberikan hubungan yang stabil, menambah panjang interval beacon, dan mematikan sistem selama sistem tersebut tidak diperlukan.

Kebanyakan sistem pembangkit tenaga surya mandiri bekerja di 12 atau 24 volt. Lebih baik, alat nirkabel yang menggunakan tegangan DC sebaiknya digunakan, yang beroperasi di tegangan 12 Volt yang disediakan oleh kebanyakan baterai asam timbal. Mengubah tegangan yang disediakan oleh baterai menjadi AC atau memakai tegangan di input titik akses yang berbeda dari tegangan baterai akan menyebabkan kehilangan daya yang tidak perlu. Sangat baik jika kita menggunakan router atau titik akses yang menerima 8-20 Volt DC.

Kebanyakan titik akses yang murah mempunyai pengatur tegangan switching di dalamnya dan akan berkerja pada kisaran tegangan tersebut tanpa modifikasi atau menjadi panas (sekalipun alat dipaketkan dengan sumber listrik 5 atau 12 Volt).

PERINGATAN: mengoperasikan titik akses anda dengan sumber listrik lain daripada yang disediakan oleh pabrik tentunya akan membatalkan garansi apapun, dan mungkin menyebabkan kerusakan pada peralatan anda. Teknik berikut akan bekerja seperti yang dijelaskan, tapi ingat jika anda mencobanya, anda melakukannya dengan resiko anda sendiri.

Buka titik akses anda dan perhatikan bagian dekat input DC untuk dua kapasitor yang relatif besar dan sebuah induktor (ferrite toroid dengan kawat tembaga yang dibelitkan padanya). Jika mereka ada, maka alat tersebut mempunyai input switch, dan tegangan input maksimum sebaiknya agak di bawah tegangan yang tertulis pada kapasitor. Biasanya penilaian kapasitor ini adalah 16 atau 25 volt. Perhatikan bahwa sumber listrik yang tidak teratur mempunyai gelombang dan mungkin memberikan input tegangan yang jauh lebih tinggi kepada titik akses anda daripada tegangan umum yang disarankan oleh apa yang tertulis. Oleh sebab itu, menyambung sumber listrik yang tidak teratur dengan tegangan 24 Volt ke alat dengan kapasitor bertegangan 25 Volt bukanlah hal yang baik. Tentunya, membuka alat anda akan membatalkan garansi apapun yang ada. Jangan coba-coba menjalankan titik akses di tegangan yang lebih tinggi jika titik akses itu tidak mempunyai regulator switching. Titik akses akan menjadi panas, rusak, atau terbakar.

Peralatan berdasarkan CPU tradisional Intel x86 adalah peralatan yang boros daya dibandingkan dengan arsitektur berbasis pada RISC seperti ARM atau MIPS. Satu dari banyak motherboard dengan konsumsi daya terendah adalah platform Soekris yang menggunakan prosesor AMD ElanSC520. Pilihan yang berbeda dari AMD (ElanSC atau Geode SC1100) adalah penggunaan peralatan dengan prosesor MIPS. Prosesor MIPS mempunyai kinerja yang lebih baik daripada AMD Geode, sesuatu yang harus dibayar dengan konsumsi daya antara 20-30% lebih banyak.

Linksys WRT54G yang populer berfungsi di tegangan antara 5 dan 20 volt DC dan menggunakan daya sekitar 6 Watt, tetapi alat ini memiliki Ethernet switch didalamnya. Mempunyai sebuah switch tentu saja baik dan berguna - tetapi switch ini menggunakan daya ekstra. Linksys juga menyediakan titk akses Wi-Fi yang dinamakan WAP54G yang menggunakan daya hanya sebesar 3 Watt dan dapat menjalankan OpenWRT dan Freifunk firmware. Sistem 4G Accesscube menggunakan daya sekitar 6 Watt ketika diperlengkapi dengan sebuah antarmuka WiFi. Jika 802.11b cukup, maka kartu mini PCI dengan chipset Orinoco berkinerja dengan baik saat menggunakan daya minimum.

Peralatan Konsumsi (Watt) Linksys WRT54G (BCM2050 radio) 6 Linksys WAP54G (BCM2050 radio) 3 Orinoco WavePoint II ROR (30mW radio) 15 Soekris net4511 (no radio) 1.8 PC Engines WRAP.1E-1 (no radio) 2.04 Mikrotik Routerboard 532 (no radio) 2.3 Inhand ELF3 (no radio) 1.53 Senao 250mW radio 3 Ubiquiti 400mW radio 6

Banyaknya daya yang diperlukan oleh peralatan nirkabel bergantung tidak hanya pada arsitektur tetapi juga pada jumlah jaringan antarmuka, radio, macam memori/penyimpanan dan lalu-lintas. Sebagai kadiah umum, motherborad nirkabel konsumsi rendah mengkonsumsi 2 sampai 3 W, dan kartu radio 200 mW mengkonsumsi sampai 3 W. Kartu berdaya tinggi (seperti 400 mW Ubiquity) mengkonsumsi sekitar 6 W. Stasion pengulang dengan dua radio dapat berkisar antara 8 sampai 10 W.

Walaupun standar IEEE 802.11 meliputi mekanisme cara penghematan daya atau power saving mode (PS), keuntungannya tidak sebaik seperti yang anda harapkan. Mekanisme utama untuk penghematan daya adalah memungkinkan stasiun untuk secara periodik me-non-aktifkan kartu nirkabel mereka dengan sirkuit pengatur waktu. Ketika kartu nirkabel aktif, kartu tersebut akan mengecek apakah beacon tersedia, yang menunjukkan adanya trafik yang menunggu. Penghematan daya oleh karena itu hanya terjadi di sisi klien, karena titik akses harus tetap aktif untuk memancarkan beacon dan menyimpan trafik bagi klien.

Mode penghematan daya mungkin tidak kompatibel antar pabrik, yang dapat menyebabkan tidak stabilnya hubungan nirkabel. Adalah hampir selalu yang terbaik untuk membiarkan mode penghematan daya agar tetap tidak aktif pada semua peralatan, karena kesukaran yang ditimbulkan mungkin akan melebihi jumlah penghematan daya yang sedikit.


Memilih tegangan

Kebanyakan sistem mandiri yang berdaya rendah menggunakan baterai berdaya 12 V, karena daya baterai tersebut adalah tegangan operasional yang umum dipergunakan dalam baterai asam-timbal yang disekat. Ketika mendesain sebuah sistem komunikasi nirkabel, anda harus mempertimbangkan tegangan yang sangat efisien operasi peralatan anda. Sementara tegangan input dapat menerima wilayah tegangan yang lebar, anda perlu memastikan bahwa konsumsi daya keseluruhan sistem adalah minimal.


Memasang kabel

Bagian penting instalasi adalah pengawatan, karena pengawatan yang baik akan menjamin pemindahan daya yang efisien. Beberapa praktek yang baik yang sebaiknya anda pertimbangkan termasuk:

Gunakan sekrup untuk untuk mengencangkan kabel pada sambungan baterai. Hubungan yang longgar akan memboroskan daya. Oleskan Vaseline atau selai mineral pada sambungan baterai. Sambungan yang rusak mempunyai hambatan tambahan, yang menimbulkan kehilangan. Untuk arus rendah (<10), pertimbangkanlah penggunaan konektor powerpole Faston atau Anderson. Untuk arus yang lebih besar, gunakanlah metalik ring berulir.

Ukuran kawat biasanya tersedia dalam American Wire Gauge (AWG). Selama perhitungan anda, anda perlu melakukan konversi antara AWG dan mm2 untuk memperkirakan hambatan kabel. Misalnya, kabel AWG #6 mempunyai diameter 4,11 mm dan dapat bekerja dengan baik sampai 55 A. Sebuah grafik koversi, yang didalamnya termasuk perkiraan hambatan dan kapasitas mengangkut arus, tersedia dalam Appendix D. Selalu ingat bahwa kapasitas mengangkut arus juga dapat bervariasi tergantung pada macam isolasi dan aplikasi. Jika anda ragu-ragu, konsultasikan dengan pabrik untuk lebih banyak informasi.


Orientasi panel surya

Sebagian besar daya yang datang dari matahari tiba dalam bentuk garis lurus. Modul surya akan menangkap lebih banyak daya jika modul tersebut “menghadap” matahari, tegaklurus terhadap garis lurus antara posisi instalasi dan matahari. Tentunya, posisi matahari terus-menerus berubah relatif terhadap tanah, oleh sebab itu kita perlu menemukan posisi optimal bagi panel-panel kita. Orientasi panel-panel ditentukan oleh dua sudut, azimut a dan kemiringan atau ketinggian ß. Azimut adalah sudut ke arah selatan bagi mereka yang berada di belahan bumi utara, atau sudut ke arah utara bagi mereka di belahan bumi selatan. Kemiringan adalah sudut yang terbentuk oleh permukaan modul dan bidang horisontal.


Azimuth

Anda sebaiknya membuat modul mengarah ke arah khatulistiwa (menghadap ke selatan di belahan bumi utara, dan utara di yang selatan) agar selama siang hari panel tersebut dapat menangkap jumlah radiasi sebanyak mungkin (a = 0).

Adalah sangat penting untuk memastikan bahwa tidak ada bagian panel-panel yang berada di bawah tempat yang teduh!. Pelajari elemen di sekitar array panel (pohon, gedung, tembok, panel lain, dll. ) untuk memastikan bahwa mereka tidak akan pernah membentuk bayangan di atas panel-panel. Adalah dapat diterima untuk memutar panel ±20o ke arah timur atau barat jika diperlukan (= ±20o).


Kemiringan

Ketika anda sudah menetapkan azimut, parameter yang pokok dalam perhitungan kita adalah kemiringan panel, yang akan kita ungkapkan sebagai sudut beta (ß). Tinggi maksimum yang dicapai oleh matahari setiap hari akan bervariasi, dengan maksimum pada hari pertengahan musim panas dan minimum pada pertengahan musim dingin. Idealnya, panel-panel sebaiknya mengikuti variasi ini, tetapi ini biasanya tidak mungkin karena alasan biaya.

Dalam instalasi dengan peralatan telekomunikasi adalah normal untuk memasang panel pada kemiringan tertentu. Dalam kebanyakan skenario telekomunikasi, permintaan daya sistem adalah konstan sepanjang tahun. Penyediaan daya yang cukup selama "bulan terburuk" akan terjadi paling baik untuk sisa tahun.

Nilai ß sebaiknya memaksimalisir rasio antara tawaran dan permintaan daya.

Untuk instalasi dengan konsumsi yang konsisten (atau hampir konsisten) sepanjang tahun, sangat diinginkan untuk mengoptimalkan instalasi untuk menangkap radiasi maksimum selama bulan "musim dingin". Anda sebaiknya menggunakan nilai mutlak garis lintang dari tempat (sudut F) yang bertambah sebanyak 10° (ß = | F | + 10 °). Untuk instalasi dengan konsumsi yang kurang selama musim dingin, nilai garis lintang dari tempat dapat digunakan sebagai kemiringan panel surya. Dengan cara ini, sistem dioptimisasi untuk bulan-bulan musim semi dan musim gugur (ß = | F |). Untuk instalasi yang hanya digunakan selama musim panas, anda sebaiknya menggunakan nilai mutlak garis lintang tempat (sudut F) yang dikurangi sebanyak 10° (ß = | F | - 10°).

Kemiringan panel tidak boleh kurang dari 15° untuk menghindari penumpukan debu dan/atau kelembaban pada panel. Dalam daerah dimana terdapat salju dan es, sangatlah penting untuk melindungi panel-panel dan menambah kemiringan mereka sebesar 65° atau lebih.

Jika ada pertambahan yang besar dalam konsumsi selama musim panas, anda mungkin perlu mempertimbangkan untuk mengatur dua sudut kemiringan yang tetap, satu posisi untuk bulan musim panas dan lain untuk bulan musim dingin. Ini akan memerlukan struktur penopang yang khusus dan jadwal yang teratur untuk mengubah posisi panel-panel.


Bagaimana caranya untuk menentukan ukuran sistem fotovoltaik anda

Ketika memilih peralatan untuk memenuhi kebutuhan daya anda, anda perlu menentukan setidaknya yang berikut ini:

Jumlah dan macam panel surya yang diperlukan untuk menangkap daya surya yang cukup untuk mendukung beban anda. Kapasitas minimum baterai. Baterai perlu menyimpan cukup daya untuk menyediakan daya pada malam hari dan hari-hari dengan penyinaran matahari yang sedikit, dan akan menentukan jumlah hari-hari otonomi anda. Karakteristik semua bagian lainnya (regulator, perkabelan, dll. ) yang diperlukan untuk mendukung banyaknya daya yang dihasilkan dan disimpan.

Perhitungan besaran ukuran sistem penting, karena kecuali jika komponen sistem seimbang, daya (dan juga, uang) akan terbuang percuma. Misalnya, jika kita memasang lebih banyak panel surya untuk menghasilkan lebih banyak daya, baterai sebaiknya mempunyai kapasitas yang cukup untuk menyimpan daya tambahan yang dihasilkan. Jika kumpulan baterai terlalu kecil dan beban tidak menggunakan daya maka ketika daya tersebut dihasilkan, maka daya harus dibuang. Sebuah regulator amperage yang lebih kecil daripada yang diperlukan, atau satu kabel yang terlalu kecil, dapat menjadi sebab kegagalan (atau bahkan kebakaran) dan membuat instalasi tidak berguna.

Jangan pernah lupa bahwa kemampuan daya fotovoltaik untuk menghasilkan dan menyimpan daya listrik terbatas. Dengan tidak sengaja meninggalkan sebuah bola lampu ringan tetap menyala pada siang hari dapat dengan mudah menghabiskan cadangan daya anda sebelum malam hari, ketika tidak ada daya tambahan yang tersedia. Ketersediaan "bahan bakar" untuk sistem fotovoltaik (yaitu, radiasi matahari) bisa sulit untuk diramalkan. Sebenarnya, tidak pernah mungkin untuk benar-benar memastikan bahwa sistem yang mandiri dapat memberikan daya yang diperlukan pada saat tertentu kapanpun. Sistem pembangkit tenaga surya didesain untuk konsumsi tertentu, dan jika pengguna melanggar batas yang sudah direncanakan, maka penyediaan daya akan gagal.

Metode desain yang kami usulkan termasuk pertimbangan keperluan daya, dan berdasarkan keperluan tersebut memperhitungkan sistem yang berfungsi untuk sejumlah waktu maksimum sehingga sistem itu dapat diandalkan sebisa mungkin. Tentunya, jika lebih banyak panel dan baterai terpasang, akan lebih banyak daya yang dapat dikumpulkan dan disimpan. Peningkatan kehandalan ini juga akan mempunyai pertambahan dalam biaya.

Dalam beberapa instalasi fotovoltaik (seperti penyediaan daya untuk peralatan telekomunikasi pada tulang punggung jaringan), faktor kehandalan lebih penting daripada biaya. Pada instalasi pelanggan, biaya rendah mungkin merupakan faktor yang paling penting. Menemukan keseimbangan antara biaya dan kehandalan bukanlah tugas yang mudah, tetapi apapun situasinya, anda sebaiknya dapat menentukan apa yang diharapkan dari pilihan desain anda, dan pada biaya berapa.

Metode yang kita akan gunakan untuk menentukan besaran ukuran sistem dikenal sebagai metode bulan terburuk atau method of the worst month. Secara sederhana, kita hitung dimensi sistem mandiri tersebut, agar sistem itu dapat berfungsi dalam bulan dimana permintaan daya terbesar terkait dengan ketersediaan daya surya. Bulan tersebut merupakan yang teburuk dalam setahun, karena bulan ini mempunyai rasio terbesar antara daya yang diperlukan dan daya yang tersedia.

Dengan menggunakan metode ini, kehandalan / reliability dimasukan sebagai pertimbangan dengan menetapkan jumlah maksimum hari dimana sistem dapat beroperasi tanpa menerima radiasi surya (yaitu, ketika semua konsumsi dibuat hanya dengan mengorbankan daya yang disimpan dalam baterai). Ini dikenal sebagai jumlah maksimum hari otonomi atau maximum number of days of autonomy (N), dan dapat dibayangkan sebagai jumlah hari berawan yang berurutan jika panel tidak mengumpulkan jumlah daya apapun yang berarti.

Ketika memilih N, kita harus mengetahui kondisi iklim setempat, serta keterkaitan ekonomi dan sosial terhadap instalasi tersebut. Apakah instalasi tersebut akan digunakan untuk menerangi rumah, rumah sakit, pabrik, untuk hubungan radio, atau untuk suatu aplikasi lainnya? Ingatlah bahwa pada saat N bertambah, bertambah pula investasi dalam peralatan dan pemeliharaan. Juga penting untuk mengevaluasi semua kemungkinan biaya logistik penggantian peralatan. Tidaklah sama antara mengganti baterai yang dayanya sudah habis dari sebuah instalasi di tengah kota dengan mengganti baterai di atas menara telekomunikasi yang berlokasi beberapa jam lebih jauh untuk ditempuh dengan berjalan kaki.

Menetapkan nilai N bukanlah tugas yang mudah, karena ada banyak faktor yang terlibat, dan banyak di antara mereka tidak bisa dievaluasi secara mudah. Pengalaman anda akan memainkan peranan penting dalam menentukan ukuran sistem ini. Satu nilai yang biasanya digunakan untuk peralatan telekomunikasi yang penting adalah N = 5, sedangkan untuk peralatan pelanggan berbiaya rendah sangatlah mungkin untuk mengurangi otonomi sampai N = 3.

Dalam Appendix E, kami sudah memasukkan beberapa tabel yang akan memudahkan pengumpulan data yang diperlukan untuk menentukan ukuran sistem. Sisa bab ini akan menjelaskan secara terperinci informasi apa yang anda perlu kumpulkan atau perkirakan dan bagaimana caranya untuk menggunakan metode "bulan terburuk".

Data yang perlu dikumpulkan

Lintang instalasi / latitude of the installation. Ingatlah untuk menggunakan tanda positif untuk belahan bumi utara dan negatif untuk sebelah selatan. Data radiasi surya / solar radiation data. Untuk metode "bulan terburuk" cukup diketahui hanya dua belas nilai, satu untuk setiap bulannya. Kedua belas angka ini adalah nilai rata-rata bulanan penyinaran global harian di bidang horisontal (Gdm(0), dalam kWh/m2 per hari). Nilai bulanan adalah jumlah nilai penyinaran global untuk setiap harinya dalam sebulan, yang dibagi dengan jumlah hari dalam bulan tersebut.

Jika anda mempunyai data dalam Joule (J), anda dapat mempergunakan konversi berikut:

           1 J = 2.78 x 10-7 kWh

Data penyinaran Gdm (0) dari banyak tempat di dunia dikumpulkan dalam tabel dan database. Anda sebaiknya memeriksa informasi ini dari kantor pengamat cuaca yang berdekatan dengan lokasi implementasi anda, namun janganlah kaget jika anda tidak menemukan data dalam format elektronik. Adalah gagasan yang baik untuk bertanya pada perusahaan yang memasang sistem fotovoltaik di daerah tersebut, karena pengalaman mereka bisa sangat berguna.

Jangan anggap "jam matahari" sama dengan "jam puncak matahari”. Jumlah jam puncak matahari tidak ada hubungannya dengan jumlah jam tanpa awan, tetapi merujuk pada banyaknya penyinaran harian. 5 jam matahari dalam sehari tanpa awan belum tentu merupakan jam itu ketika matahari berada zenithnya.

Jam puncak matahari adalah nilai radiasi matahari yang dinormalisasikan 1000 W/m2 pada 25o C. Jadi ketika kita merujuk pada 5 jam puncak matahari, ini berarti radiasi matahari harian 5000 W/m2.


Karakteristik kelistrikan komponen sistem

Karakteristik kelistrikan komponen sistem anda sebaiknya disediakan oleh pabrik. Adalah dianjurkan untuk membuat pengukuran anda sendiri untuk memeriksa deviasi dari nilai nominal. Sayangnya, deviasi dari nilai yang dijanjikan bisa besar dan sebaiknya dinantikan.

Berikut ini adalah nilai minimum yang harus anda kumpulkan sebelum menentukan ukuran sistem anda:


Panel

Anda perlu mengetahui tegangan VPmax dan arus IPmax di titik daya maksimum dalam kondisi standar.


Baterai

Kapasitas nominal (untuk 100 jam pengeluaran daya) CNBat, tegangan operasional VNBat, dan kedalaman maksimum pengeluaran daya DoDmax atau kapasitas berguna CUBat. Anda juga perlu mengetahui macam baterai yang anda berencana untuk gunakan, baik apakah itu timbal-asam tersekat, AGM, baterai mobil yang sudah dimodifikasi dll. Macam baterai penting ketika menentukan batas dalam pengatur.


Regulator

Anda perlu mengetahui nominal tegangan VNReg, dan arus maksimum yang bisa beroperasi ImaxReg.


Konverter/ Inverter DC/AC

Jika anda akan menggunakan konverter, anda perlu mengetahui tegangan nominal VNConv, daya seketika PIConv dan kinerja pada 70% beban maksimum H70.


Peralatan atau beban

Kita perlu mengetahui tegangan nominal VNC dan daya nominal operasi PC untuk setiap bagian peralatan yang dihidupkan oleh sistem. Guna mengetahui jumlah daya yang akan dikonsumsi oleh instalasi kita, sangatlah penting untuk mempertimbangkan waktu rata-rata setiap beban yang akan dipakai. Apakah terus-menerus? Atau apakah akan dipakai tiap hari, tiap minggu, setiap bulan atau tahun? Pertimbangkan pergantian apapun dalam penggunaan yang mungkin berdampak pada banyaknya daya yang diperlukan (penggunaan musiman, periode latihan atau sekolah, dll. )


Variabel lainnya

Terlepas dari sifat-sifat kelistrikan komponen dan beban, adalah perlu untuk mengambil keputusan pada dua informasi tambahan sebelum kita dapat menentukan besaran ukuran sebuah sistem fotovoltaik. Dua keputusan ini adalah jumlah hari otonomi yang diperlukan dan tegangan operasional sistem.


N, jumlah hari-hari otonomi

Anda perlu menentukan nilai untuk N yang akan menyeimbangkan kondisi meteorologi dengan tipe instalasi dan biaya keseluruhan. Adalah mustahil untuk memberikan nilai konkrit N yang berlaku untuk setiap instalasi, tetapi tabel berikut ini memberi beberapa nilai yang dianjurkan. Gunakan nilai ini sebagai perkiraan kasar, dan konsultasikan dengan seorang perancang berpengalaman untuk mencapai keputusan akhir.

Ketersediaan Matahari Instalasi Rumah Instalasi Kritis Sangat berawan 5 10 Bervariasi 4 8 Terang 3 6


VN, tegangan nominal instalasi

Komponen sistem anda perlu dipilih agar dapat berfungsi pada tegangan nominal VN. Tegangan ini biasanya 12 atau 24 Volt untuk sistem kecil, dan jika konsumsi daya total melebihi 3 kW, tegangan akan menjadi 48 V. Seleksi VN tidak sembarangan, dan bergantung pada ketersediaan peralatan.

Jika peralatan mengijinkannya, cobalah menetapkan tegangan nominal ke 12 atau 24 V. Banyak peralatan komunikasi nirkabel menerima tegangan input yang lebar dan dapat digunakan tanpa konverter. Jika anda perlu menghidupkan beberapa macam peralatan yang berkerja pada tegangan nominal yang berbeda, perhitungkan tegangan yang meminimalkan pemakaian daya secara keseluruhan, termasuk kehilangan pada konversi daya menggunakan konverter DC/DC dan DC/AC.


Prosedur perhitungan

Ada tiga langkah utama yang perlu diikuti untuk menghitung ukuran sistem yang sesuai:

1.Perhitungkan daya surya yang ada (sebagai tawaran). Berdasarkan data statistik radiasi surya, dan orientasi dan kemiringan optimal panel-panel surya, kita menghitung daya surya yang ada. Penilaian daya surya yang ada dilakukan dalam interval bulanan, mengurangi data statistik sampai 12 nilai. Perkiraan ini adalah kompromi yang baik antara ketepatan dan kesederhanaan. 2.Perkirakan daya listrik yang diperlukan (sebagai permintaan). Catat sifat pemakaian daya peralatan yang dipilih serta perkiraan lama penggunaannya. Lalu perhitungkan daya listrik yang diperlukan dalam setiap bulannya. Anda sebaiknya mempertimbangkan fluktuasi penggunaan yang diharapkan karena variasi antara musim dingin dan musim panas, periode musim hujan/kering, periode sekolah/liburan, dll. Hasil berupa 12 nilai permintaan daya, masing-masing untuk setiap bulan dalam setahun. 3.Perhitungkan ukuran sistem ideal (hasilnya). Dengan data dari “bulan terburuk”, ketika hubungan antara daya surya yang dibutuhkan dan daya yang tersedia sangat erat, maka kita menghitung:

Arus yang harus disediakan oleh array panel, yang akan menentukan jumlah minimum panel. Kapasitas penyimpanan daya yang diperlukan untuk menutupi jumlah minimum hari-hari otonomi, yang akan menentukan jumlah baterai yang diperlukan. Karakteristik kelistrikan regulator yang diperlukan. Panjang dan bagian-bagian yang diperlukan dari kabel itu untuk hubungan listrik.


Arus yang diperlukan dalam bulan terburuk

Untuk setiap bulan, anda perlu memperhitungkan nilai Im, yang merupakan arus maksimum sehari-hari yang harus disediakan oleh array panel yang beroperasi pada tegangan nominal VN, dalam suatu hari dengan penyinaran Gdm untuk bulan ”m”, bagi panel-panel dengan kemiringan ß derajat.

Im(BULAN TERBURUK) akan menjadi nilai Im yang paling besar, dan penentuan besaran ukuran sistem didasarkan pada data bulan terburuk itu. Perhitungan Gdm (ß) untuk tempat tertentu dapat dibuat berdasarkan Gdm(0) dengan menggunakan software komputer seperti PVSYST (http://www.pvsyst.com/) atau PVSOL (http://www.solardesign.co.uk/).

Karena loss di pengatur dan baterai, dan karena fakta bahwa panel-panel tidak selalu berfungsi di titik daya maksimum, arus yang diperlukan ImMAX dihitung sebagai berikut:

ImMAX = 1,21 Im (BULAN TERBURUK)

Ketika anda sudah menentukan bulan terburuk, nilai ImMAX, dan total daya yang anda perlukan ETOTAL (BULAN TERBURUK), anda dapat melanjutkan ke perhitungan terakhir. ETOTAL adalah jumlah seluruh beban DC dan AC, dalam Watt. Untuk menghitung ETOTAL, lihatlah Appendix E.


Jumlah panel

Dengan mengkombinasikan panel-panel surya dalam serial dan paralel, kita dapat mendapatkan tegangan dan arus yang diinginkan. Ketika panel-panel tersambung dalam serial, jumlah tegangan total setara dengan jumlah tegangan individual masing-masing modul, sedangkan arus tidak berubah. Ketika menyambungkan panel-panel secara paralel, arus dijumlahkan sedangkan tegangan tidak berubah. Sangatlah penting untuk memakai panel-panel yang sifatnya yang hampir identik ketika membuat array.

Anda sebaiknya mencoba untuk memperoleh panel-panel dengan VPmax yang sedikit lebih besar daripada tegangan nominal sistem (12, 24 atau 48 V). Ingatlah bahwa anda perlu menyediakan sedikit tegangan dari tegangan nominal baterai untuk mengisinya. Jika tidak mungkin untuk menemukan satu panel yang memenuhi keperluan anda, anda perlu menyambung beberapa panel dalam serial untuk mencapai tegangan yang anda inginkan. Jumlah panel yang di seri Nps adalah sama dengan tegangan nominal sistem dibagi tegangan sebuah panel, yang dibulatkan ke atas ke bilangan bulat terdekat.

Nps = VN/VPmax

Untuk memperhitungkan jumlah panel yang paralel (Npp), anda perlu membagi ImMAX dengan arus sebuah panel di titik daya maksimum Ipmax, yang dibulatkan ke atas ke integer terdekat.

Npp = ImMAX/IPmax

Jumlah total panel adalah hasil perkalian jumlah panel yang di seri (untuk menentukan tegangan) oleh jumlah panel yang di paralel (untuk menentukan arus).

NTOTAL = Nps x Npp


Kapasitas baterai atau akumulator

Baterai menentukan tegangan keseluruhan sistem dan memerlukan kapasitas yang cukup untuk menyediakan daya kepada beban pada saat tidak terdapat radiasi surya yang cukup. Untuk memperkirakan kapasitas baterai kita, kita terlebih dulu menghitung kapasitas daya sistem kita yang diperlukan (kapasitas yang diperlukan atau necessary capacity, CNEC). Kapasitas yang diperlukan ini bergantung pada daya yang ada selama "bulan terburuk" dan jumlah hari-hari otonomi yang diinginkan (N).

         CNEC (Ah)= ETOTAL(Bulan Terburuk)(Wh) / VN(V) x N 

Kapasitas nominal baterai CNOM harus lebih besar daripada CNEC karena kita tidak bisa sepenuhnya mengeluarkan daya baterai. Untuk menghitung ukuran baterai kita perlu mempertimbangkan kedalaman maksimum pengeluaran daya (DoD) yang dimungkinkan oleh baterai:

         CNOM (Ah) = CNEC (Ah)/ DoDMAX 

Untuk memperhitungkan jumlah baterai dalam seri (Nbs), kita bagi tegangan nominal instalasi kita (VN) dengan tegangan nominal satu baterai (VNBat):

         Nbs = VN / VNBat 


Regulator

Sebuah peringatan penting: selalu gunakan regulator dalam seri, tidak paralel. Jika pengatur anda tidak mampu mendukug arus yang diperlukan oleh sistem anda, anda perlu membeli sebuah pengatur baru dengan arus yang lebih besar.

Untuk alasan keamanan, sebuah pengatur baru harus mampu beroperasi dengan arus ImaxReg sedikitnya 20% lebih besar daripada intensitas maksimum yang disediakan oleh array panel-panel:

        ImaxReg = 1,2 Npp IPMax 


Inverter DC/AC

Jumlah daya yang diperlukan untuk peralatan AC dihitung dengan memasukkan semua loss yang disebabkan oleh konverter DC/AC atau inverter DC/AC. Ketika memilih inverter, selalu ingat bahwa kinerja inverter bervariasi berdasarkan banyaknya daya yang dibutuhkan. Sebuah inverter mempunyai karakteristik kinerja yang lebih baik ketika beroperasi dekat kemampuan dayanya. Menggunakan inverter 1500 Watt untuk menghidupkan beban 25 Watt sangatlah tidak efisien. Untuk menghindari daya yang terbuang ini, sangatlah penting untuk menganggap bukan daya tertinggi seluruh peralatan anda, tetapi puncak daya peralatan yang diharapkan untuk beroperasi secara bersamaan.


Kabel

Pada saat anda sudah mengetahui jumlah panel surya dan baterai, dan macam regulator dan inverter yang anda ingin gunakan, adalah perlu untuk memperhitungkan panjang dan ketebalan kabel yang diperlukan untuk menyambung berbagai bagian tersebut menjadi satu.

Panjang kabel bergantung pada lokasi instalasi anda. Anda sebaiknya berusaha meminimalkan panjang kabel antara pengatur, panel surya, dan baterai. Memakai kabel pendek akan mengurangi kehilangan daya dan biaya kabel.

Ketebalan kabel dipilih berdasarkan panjang kabel dan arus maksimum yang harus diteruskannya. Tujuannya adalah meminimalisir penurunan tegangan. Untuk dapat menghitung ketebalan S kabel, perlu untuk mengetahui:

Arus maksimum IMC yang akan melalui kabel. Dalam kasus sub-sistem baterai-panel, adalah ImMAX yang diperhitungkan untuk setiap bulan. Dalam sub-sistem beban-baterai ImMax bergantung pada bagaimana caranya beban disambung. Penurunan tegangan (Va-Vb) yang kita anggap dapat diterima dalam kabel. Penurunan tegangan yang merupakan hasil dari penambahan semua penurunan yang mungkin diungkapkan sebagai persen tegangan nominal instalasi. Nilai umum maksimum ialah:

Komponen Penurunan tegangan (% VN) Panel Array -> Battery 1% Battery -> Converter 1% Main Line 3% Main Line (Illumination) 3% Main Line (Equipment) 5%


Penurunan Tegangan Yang Dapat di Terima di Kabel

Bagian kabel ditentukan oleh hukum Ohm:

        S(mm2) = r( Ωmm2/m)L(m) ImMAX(A)/ (Va-Vb)(V) 

Di mana S adalah bagian kabel, r ialah resistivitas (karakteristik internal bahan: untuk tembaga, 0,01286 Ωmm2/m), dan L adalah panjang kabel.

S dipilih dengan mempertimbangkan kabel yang ada di pasar. Anda sebaiknya memilih bagian yang jauh lebih baik daripada apa yang didapatkan dari rumus. Karena alasan keamanan ada nilai minimum, untuk kabel yang menyambung panel dan baterai, nilai minimum adalah 6 mm2. Untuk bagian lain, minimumnya ialah 4 mm2.


Biaya instalasi pembangkit listrik tenaga surya

Sementara daya surya sendiri gratis, namun tidak untuk peralatan yang diperlukan untuk mengubahnya menjadi daya listrik. Anda tidak hanya perlu membeli peralatan untuk mengubah daya surya menjadi listrik dan menyimpannya untuk penggunaan, tetapi anda juga harus mengganti dan memelihara berbagai bagian sistem. Masalah penggantian peralatan sering kali diabaikan, akhirnya sistem pembangkit listrik tenaga surya dijalankan tanpa rencana pemeliharaan yang baik.

Untuk memperhitungkan biaya sesungguhnya dari instalasi anda, kami berikan sebuah contoh ilustratif. Hal pertama yang harus dilakukan adalah memperhitungkan biaya investasi awal.

Deskripsi Jumlah Biaya satuan Subtotal Panel surya 60W (sekitar $4/W) 4 $300 $1,200 Regulator 30A 1 $100 $100 Kabel (meter) 25 $1/ meter $25 Baterai 50Ah (deep cycle) 6 $150 $900 Total $2,225

Perhitungan biaya investasi kita relatif mudah ketika sistem sudah didimensikan. Anda hanya perlu menambahkan harga untuk masing-masing bagian peralatan dan biaya tenaga kerja untuk memasang dan menyambungkan peralatan menjadi satu. Untuk kesederhanaan, kita tidak memasukkan biaya angkut dan instalasi tetapi anda sebaiknya tidak mengabaikan mereka.

Untuk memahami berapa biaya sistem agar dapat beroperasi, kita harus memperkirakan seberapa lama tiap bagian akan berfungsi dan seberapa sering anda harus menggantinya. Dalam istilah akuntansi, ini dikenal sebagai amortisasi. Tabel baru kita terlihat seperti berikut ini:

Deskripsi

Biaya satuan Subtotal Umur (tahun) Biaya Tahunan Panel surya 60W 4 $300 $1,200 20 $60 Regulator 30A 1 $100 $100 5 $20 Kabel (meter) dengan ketebalan 50 Ah 25 $1/ meter $25 10 $2.50 Baterai 50 Ah (deep cycle) 6 $150 $900 5 $180

Total: $2,225 Biaya tahunan: $262.50

Seperti yang anda lihat, ketika investasi pertama sudah dilakukan, akan ada biaya tahunan sebesar $262,50. Biaya tahunan adalah perkiraan kapital yang dibutuhkan setiap tahun untuk mengganti bagian sistem begitu umur kegunaan mereka berakhir.