Difference between revisions of "R: tidytext RPJP BAPPENAS"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | install.packages("rJava") | ||
install.packages("xlsx") | install.packages("xlsx") | ||
install.packages("tm") | install.packages("tm") |
Latest revision as of 12:20, 26 November 2019
install.packages("rJava") install.packages("xlsx") install.packages("tm") install.packages("wordcloud") install.packages("ggplot2") install.packages("RWeka") library(xlsx) library(tm) library(wordcloud) library(ggplot2)
library(tidyverse) library(tidytext) library(RWeka) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE)) # Get the document term matrices
# dengan Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE)) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE))
# tanpa Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram) inspect(dtm_bigram)