R: tidytext RPJP BAPPENAS
Jump to navigation
Jump to search
install.packages("rJava") install.packages("xlsx") install.packages("tm") install.packages("wordcloud") install.packages("ggplot2") install.packages("RWeka") library(xlsx) library(tm) library(wordcloud) library(ggplot2)
library(tidyverse) library(tidytext) library(RWeka) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE)) # Get the document term matrices
# dengan Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE)) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE))
# tanpa Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram) inspect(dtm_bigram)