Difference between revisions of "R: tidytext RPJP BAPPENAS"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | install.packages("xlsx") | ||
+ | install.packages("tm") | ||
+ | install.packages("wordcloud") | ||
+ | install.packages("ggplot2") | ||
+ | |||
+ | library(xlsx) | ||
+ | library(tm) | ||
+ | library(wordcloud) | ||
+ | library(ggplot2) | ||
library(tidyverse) | library(tidyverse) |
Revision as of 12:49, 6 November 2018
install.packages("xlsx") install.packages("tm") install.packages("wordcloud") install.packages("ggplot2")
library(xlsx) library(tm) library(wordcloud) library(ggplot2)
library(tidyverse) library(tidytext) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE)) # Get the document term matrices
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = stopwords("english"), stemming = TRUE)) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = stopwords("english"), stemming = TRUE))
inspect(dtm_unigram) inspect(dtm_bigram)
converted %>% tidy() %>% filter(!grepl("[0-9]+", term)) # converted adalah DocumentTermMatrix