Difference between revisions of "4G"
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
Line 17: | Line 17: | ||
4G is being developed to accommodate the [[quality of service|QoS]] and rate requirements set by further development of existing 3G applications like wireless broadband access, [[Multimedia Messaging Service]] (MMS), [[Videoconferencing|video chat]], [[mobile TV]], but also new services like [[High-definition television|HDTV]] content, minimal services like voice and data, and other services that utilize bandwidth. It may be allow roaming with wireless local area networks, and be combined with [[digital video broadcasting]] systems. | 4G is being developed to accommodate the [[quality of service|QoS]] and rate requirements set by further development of existing 3G applications like wireless broadband access, [[Multimedia Messaging Service]] (MMS), [[Videoconferencing|video chat]], [[mobile TV]], but also new services like [[High-definition television|HDTV]] content, minimal services like voice and data, and other services that utilize bandwidth. It may be allow roaming with wireless local area networks, and be combined with [[digital video broadcasting]] systems. | ||
− | The 4G working group | + | The 4G working group has defined the following as objectives of the 4G wireless communication standard: |
*Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz. | *Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz. | ||
*A [[spectral efficiency|spectrally efficient]] system (in bits/s/Hz and bits/s/Hz/site) | *A [[spectral efficiency|spectrally efficient]] system (in bits/s/Hz and bits/s/Hz/site) |
Revision as of 09:44, 14 January 2010
4G refers to the fourth generation of cellular wireless standards. It is a successor to 3G and 2G standards, with the aim to provide ultra-broadband (gigabit-speed) internet access to mobile as well as stationary users. Although 4G is a broad term that has had several different and more vague definitions, this article uses 4G to refer to IMT Advanced (International Mobile Telecommunications Advanced), as defined by ITU-T.
A 4G cellular system must have target peak data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access, according to the ITU requirements. A 4G system is expected to provide a comprehensive and secure all-IP based solution where facilities such as IP telephony, ultra-broadband Internet access and HDTV streamed multimedia should be provided to users.
The pre-4G technology 3GPP Long Term Evolution (LTE) is often branded "4G", but the first LTE release does not fully comply with the IMT-Advanced requirements. LTE has a theoretical capacity of up to 100 Mbit/s in the downlink and 50 Mbit/s in the uplink. Most major mobile carriers in the United States and several worldwide carriers have announced plans to convert their networks to LTE beginning in 2009. The world's first publicly available LTE-service was opened in the two Scandinavian capitals Stockholm and Oslo on the 14th of December 2009, and branded 4G. The physical radio interface was at an early stage named High Speed OFDM Packet Access (HSOPA), now named Evolved UMTS Terrestrial Radio Access (E-UTRA).
LTE Advanced (Long-term-evolution Advanced) is a candidate for IMT-Advanced standard, formally submitted by the 3GPP organization to ITU-T in the fall 2009, and expected to be released in 2011. The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements. LTE Advanced should be compatible with first release LTE equipment, and should share frequency bands with first release LTE.
The Mobile WiMAX (IEEE 802.16e-2005) mobile wireless broadband access (MWBA) standard is sometimes branded 4G, and offers peak data rates of 128 Mbit/s downlink and 56 Mbit/s uplink over 20 MHz wide channels. The IEEE 802.16m evolution of 802.16e is under development, with the objective to fulfill the IMT-Advanced criteria of 1000 Mbit/s for stationary reception and 100 Mbit/s for mobile reception.
UMB (Ultra Mobile Broadband) was the brand name for a discontinued 4G project within the 3GPP2 standardization group to improve the CDMA2000 mobile phone standard for next generation applications and requirements. In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology, favouring LTE instead. The objective was to achieve data speeds over 275 Mbit/s downstream and over 75 Mbit/s upstream.
In all these suggestions for 4G, the CDMA spread spectrum radio technology used in 3G systems and IS-95 is abandoned and replaced by frequency-domain equalization schemes, for example multi-carrier transmission such as OFDMA. This is combined with MIMO (i.e. multiple antennas), dynamic channel allocation and channel-dependent scheduling.
Objective and approach
Objectives
4G is being developed to accommodate the QoS and rate requirements set by further development of existing 3G applications like wireless broadband access, Multimedia Messaging Service (MMS), video chat, mobile TV, but also new services like HDTV content, minimal services like voice and data, and other services that utilize bandwidth. It may be allow roaming with wireless local area networks, and be combined with digital video broadcasting systems.
The 4G working group has defined the following as objectives of the 4G wireless communication standard:
- Flexible channel bandwidth, between 5 and 20 MHz, optionally up to 40 MHz.
- A spectrally efficient system (in bits/s/Hz and bits/s/Hz/site)
- High network capacity: more simultaneous users per cell,
- A nominal data rate of 100 Mbit/s while the client physically moves at high speeds relative to the station, and 1 Gbit/s while client and station are in relatively fixed positions as defined by the ITU-R,
- A data rate of at least 100 Mbit/s between any two points in the world,
- Smooth handoff across heterogeneous networks,
- Seamless connectivity and global roaming across multiple networks,
- High quality of service for next generation multimedia support (real time audio, high speed data, HDTV video content, mobile TV, etc)
- Interoperability with existing wireless standards, and
- An all IP, packet switched network.
Approaches
As described in 4G consortia including WINNER, WINNER - Towards Ubiquitous Wireless Access, and WWRF, a key technology based approach is summarized as follows, where Wireless-World-INitiative-NEw-Radio (WINNER) is a consortium to enhance mobile communication systems.
Consideration points
- Coverage, radio environment, spectrum, services, business models and deployment types, users.
Principal technologies
- Physical layer transmission techniques
- No CDMA.
- MIMO: To attain ultra high spectral efficiency by means of spatial processing including multi-antenna and multi-user MIMO
- Frequency-domain-equalization, for example Multi-carrier modulation (OFDM) or single-carrier frequency-domain-equalization (SC-FDE) in the downlink: To exploit the frequency selective channel property without complex equalization.
- Frequency-domain staistical multiplexing, for example (OFDMA) or (Single-carrier FDMA) (SC-FDMA, a.k.a. Linearly precoded OFDMA, LP-OFDMA) in the uplink: Variable bit rate by assigning different sub-channels to different users based on the channel conditions
- Turbo principle error-correcting codes: To minimize the required SNR at the reception side
- Channel-dependent scheduling: To utilize the time-varying channel.
- Link adaption: Adaptive modulation and error-correcting codes
- Relaying, including fixed relay networks (FRNs), and the cooperative relaying concept, known as multi-mode protocol
4G features
According to the members of the 4G working group, the infrastructure and the terminals of 4G will have almost all the standards from 2G to 4G implemented. Although legacy systems are in place to adopt existing users, the infrastructure for 4G will be only packet-based (all-IP). Some proposals suggest having an open Internet platform. Technologies considered to be early 4G include: Flash-OFDM, the 802.16e mobile version of WiMax (also known as WiBro in South Korea), and HC-SDMA (see iBurst).
Components
Access schemes
As the wireless standards evolved, the access techniques used also exhibited increase in efficiency, capacity and scalability. The first generation wireless standards used plain TDMA and FDMA. In the wireless channels, TDMA proved to be less efficient in handling the high data rate channels as it requires large guard periods to alleviate the multipath impact. Similarly, FDMA consumed more bandwidth for guard to avoid inter carrier interference. So in second generation systems, one set of standard used the combination of FDMA and TDMA and the other set introduced an access scheme called CDMA. Usage of CDMA increased the system capacity, but as a drawback placed a soft limit on it rather than the hard limit (i.e. a CDMA network will not reject new clients when it aproaches its limits, resulting in a denial of service to all clients when the network overloads). Data rate is also increased as this access scheme (providing the network is not reaching its capacity) is efficient enough to handle the multipath channel. This enabled the third generation systems to use CDMA as the access scheme IS-2000, UMTS, HSXPA, 1xEV-DO, TD-CDMA and TD-SCDMA. However, the issue with CDMA is that it suffers from poor spectrum flexibility and scalability.
Recently, new access schemes like Orthogonal FDMA (OFDMA), Single Carrier FDMA (SC-FDMA), Interleaved FDMA and Multi-carrier CDMA (MC-CDMA) are gaining more importance for the next generation systems. WiMax is using OFDMA in the downlink and in the uplink. For the next generation UMTS, OFDMA is being considered for the downlink. By contrast, IFDMA is being considered for the uplink since OFDMA contributes more to the PAPR related issues and results in nonlinear operation of amplifiers. IFDMA provides less power fluctuation and thus avoids amplifier issues. Similarly, MC-CDMA is in the proposal for the IEEE 802.20 standard. These access schemes offer the same efficiencies as older technologies like CDMA. Apart from this, scalability and higher data rates can be achieved.
The other important advantage of the above mentioned access techniques is that they require less complexity for equalization at the receiver. This is an added advantage especially in the MIMO environments since the spatial multiplexing transmission of MIMO systems inherently requires high complexity equalization at the receiver.
In addition to improvements in these multiplexing systems, improved modulation techniques are being used. Whereas earlier standards largely used Phase-shift keying, more efficient systems such as 64QAM are being proposed for use with the 3GPP Long Term Evolution standards.
IPv6 support
Unlike 3G, which is based on two parallel infrastructures consisting of circuit switched and packet switched network nodes respectively, 4G will be based on packet switching only. This will require low-latency data transmission.
By the time that 4G is deployed, the process of IPv4 address exhaustion is expected to be in its final stages. Therefore, in the context of 4G, IPv6 support is essential in order to support a large number of wireless-enabled devices. By increasing the number of IP addresses, IPv6 removes the need for Network Address Translation (NAT), a method of sharing a limited number of addresses among a larger group of devices, although NAT will still be required to communicate with devices that are on existing IPv4 networks.
As of June 2009, Verizon has posted specifications that require any 4G devices on its network to support IPv6.
Advanced Antenna Systems
The performance of radio communications depends on an antenna system, refer to smart or intelligent antenna. Recently, multiple antenna technologies are emerging to achieve the goal of 4G systems such as high rate, high reliability, and long range communications. In the early 90s, to cater the growing data rate needs of data communication, many transmission schemes were proposed. One technology, spatial multiplexing, gained importance for its bandwidth conservation and power efficiency. Spatial multiplexing involves deploying multiple antennas at the transmitter and at the receiver. Independent streams can then be transmitted simultaneously from all the antennas. This increases the data rate into multiple folds with the number equal to minimum of the number of transmit and receive antennas. This is called MIMO (as a branch of intelligent antenna). Apart from this, the reliability in transmitting high speed data in the fading channel can be improved by using more antennas at the transmitter or at the receiver. This is called transmit or receive diversity. Both transmit/receive diversity and transmit spatial multiplexing are categorized into the space-time coding techniques, which does not necessarily require the channel knowledge at the transmit. The other category is closed-loop multiple antenna technologies which use the channel knowledge at the transmitter..
Software-Defined Radio (SDR)
SDR is one form of open wireless architecture (OWA). Since 4G is a collection of wireless standards, the final form of a 4G device will constitute various standards. This can be efficiently realized using SDR technology, which is categorized to the area of the radio convergence.
History of 4G and pre-4G technologies
- In 2002, the strategic vision for 4G — which ITU designated as IMT-Advanced — was laid out.
- In 2005, OFDMA transmission technology is chosen as candidate for the HSOPA downlink, later renamed 3GPP Long Term Evolution (LTE) air interface E-UTRA.
- In mid-2006, Sprint Nextel announced that it would invest about US$ 5 billion in a WiMAX technology buildout over the next few years. Since that time Sprint has faced many setbacks, that have resulted in steep quarterly losses. On May 7, 2008, Sprint, Imagine, Google, Intel, Comcast, Bright House, and Time Warner announced a pooling of an average of 120 MHz of spectrum and merged with Clearwire to form a company which will take the name Clear.
- In Febrary 2007, the Japanese company NTT DoCoMo tested a 4G communication system prototype with 4x4 MIMO called VSF-OFCDM at 100 Mbit/s while moving, and 1 Gbit/s while stationary. NTT DoCoMo completed a trial in which they reached a maximum packet transmission rate of approximately 5 Gbit/s in the downlink with 12x12 MIMO using a 100 MHz frequency bandwidth while moving at 10 km/h, and is planning on releasing the first commercial network in 2010.
- In September 2007, NTT Docomo demonstrated e-UTRA data rates of 200 Mbit/s with power consumption below 100 mW during the test.
- In January 2008, a U.S. FCC spectrum auction for the 700 MHz former analog TV frequencies began. As a result, the biggest share of the spectrum went to Verizon Wireless and the next biggest to AT&T. Both of these companies have stated their intention of supporting LTE.
- In January 2008, EU commissioner Viviane Reding suggested re-allocation of 500–800 MHz spectrum for wireless communication, including WiMAX.
- February 15, 2008 - Skyworks Solutions released a front-end module for e-UTRAN.
- In April 2008, LG and Nortel demonstrated e-UTRA data rates of 50 Mbit/s while travelling at 110 km/h.
- In 2008, ITU-R established the detailed performance requirements of IMT-Advanced, by issuing a Circular Letter calling for candidate Radio Access Technologies (RATs) for IMT-Advanced.
- April 2008, just after receiving the circular letter, the 3GPP organized a workshop on IMT-Advanced where it was decided that LTE-Advanced, an evolution of current LTE standard, will meet or even exceed IMT-Advanced requirements following the ITU-R agenda.
- On December 14 2009, the first commercial LTE deployment was in the Scandinavian capitals Stockholm and Oslo by the Swedish-Finnish network operator TeliaSonera and its Norweigan brandname NetCom (Norway). TeliaSonera branded the network "4G". The offered modem device were manufactured by Samsung (dongle GT-B3710), and the network infrastructure by Huawei (in Oslo) and Ericsson (in Stockholm). TeliaSonera plans to roll out nationwide LTE across Sweden, Norway and Finland. Although LTE should provide physical layer net bitrates of up to 100 Mbit/s downlink and 50 Mbit/s in the uplink, introductory tests showed a TCP goodput of 42.8 Mbit/s downlink and 5.3 Mbit/s uplink in Stockholm.
Deployment plans
In May 2005, Digiweb, an Irish fixed and wireless broadband company, announced that they have received a mobile communications license from the Irish Telecoms regulator, ComReg. This service will be issued the mobile code 088 in Ireland and will be used for the provision of 4G Mobile communications. Digiweb launched a mobile broadband network using FLASH-OFDM technology at 872 MHz.
On september 20, 2007, Verizon Wireless announced that it plans a joint effort with the Vodafone Group to transition its networks to the 4G standard LTE. On December 9, 2008, Verizon Wireless announced that they intend to build and begin to roll out an LTE network by the end of 2009.
Telus and Bell Canada, the major Canadian cdmaOne and EV-DO carriers, have announced that they will be cooperating towards building a fourth generation (4G) LTE wireless broadband network in Canada. As a transitional measure, they are implementing 3G UMTS to go live by early 2010.
Sprint offers a 3G/4G connection plan, currently available in select cities in the United States. It delivers rates up to 36 Mbit/s.
O2 is to use Slough as a guinea pig in testing the 4G network and has called upon Chinese company Huawei to install LTE technology in six masts across the town to allow people to talk to each other via HD video conferencing and play PlayStation games while on the move. If the trail is successful we could see 4G coverage available across the country by 2011.
Current research
Pervasive networks are an amorphous and at present entirely hypothetical concept where the user can be simultaneously connected to several wireless access technologies and can seamlessly move between them (See vertical handoff, IEEE 802.21). These access technologies can be Wi-Fi, UMTS, EDGE, or any other future access technology. Included in this concept is also smart-radio (also known as cognitive radio technology) to efficiently manage spectrum use and transmission power as well as the use of mesh routing protocols to create a pervasive network.
4G wireless standards
3GPP is currently standardizing LTE Advanced as future 4G standard. A first set of 3GPP requirements on LTE Advanced has been approved in June 2008. The working groups are currently evaluating various proposals for standardization. LTE Advanced will be standardized as part of the Release 10 of the 3GPP specification.