Difference between revisions of "R: tidytext RPJP BAPPENAS"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | install.packages("rJava") | ||
install.packages("xlsx") | install.packages("xlsx") | ||
install.packages("tm") | install.packages("tm") | ||
install.packages("wordcloud") | install.packages("wordcloud") | ||
install.packages("ggplot2") | install.packages("ggplot2") | ||
− | + | install.packages("RWeka") | |
+ | |||
library(xlsx) | library(xlsx) | ||
library(tm) | library(tm) | ||
Line 11: | Line 13: | ||
library(tidyverse) | library(tidyverse) | ||
library(tidytext) | library(tidytext) | ||
+ | library(RWeka) | ||
library(tm) | library(tm) | ||
directory <- "data-pdf" | directory <- "data-pdf" | ||
Line 20: | Line 23: | ||
# Get the document term matrices | # Get the document term matrices | ||
+ | # dengan Stemming | ||
+ | # | ||
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) | BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) | ||
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", | dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", | ||
removePunctuation = TRUE, | removePunctuation = TRUE, | ||
− | stopwords = stopwords(" | + | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), |
stemming = TRUE)) | stemming = TRUE)) | ||
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, | dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, | ||
removePunctuation = TRUE, | removePunctuation = TRUE, | ||
− | stopwords = stopwords(" | + | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), |
stemming = TRUE)) | stemming = TRUE)) | ||
+ | |||
+ | # tanpa Stemming | ||
+ | # | ||
+ | BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) | ||
+ | dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", | ||
+ | removePunctuation = TRUE, | ||
+ | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))) | ||
+ | dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, | ||
+ | removePunctuation = TRUE, | ||
+ | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))) | ||
inspect(dtm_unigram) | inspect(dtm_unigram) | ||
inspect(dtm_bigram) | inspect(dtm_bigram) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Latest revision as of 12:20, 26 November 2019
install.packages("rJava") install.packages("xlsx") install.packages("tm") install.packages("wordcloud") install.packages("ggplot2") install.packages("RWeka") library(xlsx) library(tm) library(wordcloud) library(ggplot2)
library(tidyverse) library(tidytext) library(RWeka) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE)) # Get the document term matrices
# dengan Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE)) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), stemming = TRUE))
# tanpa Stemming # BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))) dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, removePunctuation = TRUE, stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram) inspect(dtm_bigram)