Difference between revisions of "R: tidytext RPJP BAPPENAS"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | install.packages("rJava") | ||
install.packages("xlsx") | install.packages("xlsx") | ||
install.packages("tm") | install.packages("tm") | ||
install.packages("wordcloud") | install.packages("wordcloud") | ||
install.packages("ggplot2") | install.packages("ggplot2") | ||
| − | + | install.packages("RWeka") | |
| + | |||
library(xlsx) | library(xlsx) | ||
library(tm) | library(tm) | ||
| Line 11: | Line 13: | ||
library(tidyverse) | library(tidyverse) | ||
library(tidytext) | library(tidytext) | ||
| + | library(RWeka) | ||
library(tm) | library(tm) | ||
directory <- "data-pdf" | directory <- "data-pdf" | ||
| Line 44: | Line 47: | ||
inspect(dtm_unigram) | inspect(dtm_unigram) | ||
inspect(dtm_bigram) | inspect(dtm_bigram) | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Latest revision as of 12:20, 26 November 2019
install.packages("rJava")
install.packages("xlsx")
install.packages("tm")
install.packages("wordcloud")
install.packages("ggplot2")
install.packages("RWeka")
library(xlsx)
library(tm)
library(wordcloud)
library(ggplot2)
library(tidyverse) library(tidytext) library(RWeka) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE))
# Get the document term matrices
# dengan Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
stemming = TRUE))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
stemming = TRUE))
# tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram) inspect(dtm_bigram)