Difference between revisions of "R: tidytext RPJP BAPPENAS"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
| Line 29: | Line 29: | ||
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"), | ||
stemming = TRUE)) | stemming = TRUE)) | ||
| + | |||
| + | # tanpa Stemming | ||
| + | # | ||
| + | BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) | ||
| + | dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", | ||
| + | removePunctuation = TRUE, | ||
| + | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")) | ||
| + | dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, | ||
| + | removePunctuation = TRUE, | ||
| + | stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")) | ||
inspect(dtm_unigram) | inspect(dtm_unigram) | ||
Revision as of 16:26, 6 November 2018
install.packages("xlsx")
install.packages("tm")
install.packages("wordcloud")
install.packages("ggplot2")
library(xlsx) library(tm) library(wordcloud) library(ggplot2)
library(tidyverse) library(tidytext) library(tm) directory <- "data-pdf" # create corpus from pdfs docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE))
# Get the document term matrices
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
stemming = TRUE))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
stemming = TRUE))
# tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
removePunctuation = TRUE,
stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"))
inspect(dtm_unigram) inspect(dtm_bigram)
converted %>%
tidy() %>%
filter(!grepl("[0-9]+", term))
# converted adalah DocumentTermMatrix