SWR: Arduino
Sumber: http://www.qsl.net/on7eq/projects/arduino_pwr_swr.htm
ARDUINO RF power & SWR meter
This sketch will readout RF power and SWR from any SWR bridge (for example 'monimatch' type). As this 'monimatch' type of bridge is frequency dependant, the meter must be calibrated for every band. Because my primary interest was for VHF/UHF/SHF, I have foreseen positions for 6m, 4m, 2m, 70 cm, 23cm and 13cm bands - but you can use the ARDUINO readout on HF as well. If you intend to build a HF or VHF bridge yourself, there are several designs available on the web : I recommend to take a look at the information here, here , here and there !
The meter will operate in 3 modes:
display instantaneous power forward in Watt en dBm, display SWR
display PEP power forward (peak holding with decay)
display instantaneous power forward in Watt, display SWR, and emit 'beeps' corresponding to SWR value: low tone beeps at slow rate for low SWR, high tones at fast rate for high SWR. Very handy to tune an antenna when you can't have your eyes on the meter while fiddling on the antenna!
When the band is selected/changed, the display indicated the 'full scale' of power readout. With my type of bridge (some breakout part of mobile radio base station I presume, but working well till 2.4 GHz - I purchased it on a local flea market...) the power ranges from 1kw (6m band) to 400mW (on 13cm). Other possibility is to build a directional coupler, many designs can be found on the net. With my coupler, in the PEP power measurement mode, it is for example perfectly possible to measure the output of a WiFi access points ... Power range could be increased by adding some resistive voltage dividing network, as the maximum input on ARDUINO is +5v. But is is essential that same power gives same voltage, both in 'forward' as 'reflected' mode (when the coupler is turned around).
The meter is indented to be battery powered, therefore there is a circuit to control the LCD backlight (drawing a lot of current) and monitor the battery voltage.
Front panel of PWR & SWR meter. Left = power switch, middle = mode select push-button, right = band change push-button
Forward power is 23.3 W corresponding to +43.6 dBm
Below is the sketch or download it here . It was compiled with IDE version 0022.- IMPORTANT : please use the same or you might get errors when compiling ! You still can download previous versions from ARDUINO website . Download the connection diagram (as pdf) here or a better schematic drawn by Vlado Z32AN here.
See the meter in action on YouTube http://www.youtube.com How to calibrate the power indication ?
Using a directional coupler which is not frequency compensated, the forward voltage (indicating the power) will be frequency dependant. For a 'monimatch' type, the voltage will increase with frequency - or - otherwise said, the meter will become more sensitive at higher frequency (off course, as long as it is operated within it's design frequency range). The maximum voltage which can be measured by Arduino is +5v , this is limiting the range upwards - if necessary, a voltage divider must be foreseen (same on REFL side off course!) - according to your frequency, power & coupler.
To calibrate the sketch, follow the simple procedure below :
uncomment the calibration routine lines, this will show the VoltFWD value. Replace 2x the asterisks by a slash like below, and load the sketch in ARDUINO.
//CALIBRATION ROUTINE FORWARD VOLTAGE //////////////////// // This routine prints on LCD the FWD voltage measured. // When no power applied, the FWD voltage displayed will be the diode voltage in mV // To calculate the calibration factor, take the reading (including diode voltage) // Uncomment this routine to enter calibration mode lcd.setCursor(0, 0); lcd.print("VoltFWD= "); lcd.print(VoltFWD, DEC); delay(500); // /////////////////////////////////////////////////////
apply (for each band of interest) a known 'reference power', terminating the coupler by a dummy load (SWR = 1:1). This should produce a readout of VoltFWD, somewhere in the range 0 - 5000 (or just above 5000, as the diode voltage drop is added) - this is expressed in milliVolt. Ideally, this readout should be in the range 2000 - 4000 ('mid-scale'), adjust the reference power accordingly. Let us assume that we measure on 145MHz 2500mV with 10w power, note this value.
repeat for each band
Now calculate - for each band - the calibration factor PowCALXX (XX= band), using the formula :
PowCal=(VoltFWD²/Power) / 1000 (where power is expressed in Watt)
In our case : PowCal = 2500 x 2500 / 10 / 1000 = 625
Enter this value in the sketch, for the respective bands.
#define PowCal2m (625) // 2m band
comment again the calibration routine, by replacing the two slashes by asterisks:
/*CALIBRATION ROUTINE FORWARD VOLTAGE //////////////////// // This routine prints on LCD the FWD voltage measured. // When no power applied, the FWD voltage displayed will be the diode voltage in mV // To calculate the calibration factor, take the reading (including diode voltage) // Uncomment this routine to enter calibration mode lcd.setCursor(0, 0); lcd.print("VoltFWD= "); lcd.print(VoltFWD, DEC); delay(500); */ /////////////////////////////////////////////////////
save the sketch, and reload into ARDUINO
Test the readout with the 'reference power levels' - DONE !
Remarks :
it is be possible to measure the power not by using the 'FWD' voltage over the coupler, but directly by rectifying a sample of the RF, and measuring this voltage - which should be less frequency dependant than the coupler method. I leave it up to you to implement this in your sketch... using another ARDUINO analog input port. This can be feasible on HF, VHF ... but might be more complex on UHF and above - therefore this approach was not realized in this project.
Depending on your coupler design, it can be required to 'load it' in order to have the output going to ground level when no RF-power is applied. ARDUINO analog inputs have a very high impedance, so any stray voltage picked up can cause random readouts or 'beep-beep' when no RF-power is applied, in this case, put a 220k or 470k resistor from FWD and REFL inputs to ground. Off course all wiring to coupler must be shielded and properly RF-decoupled !
(see my other ARDUINO stuff under 'PROJECTS' page)
/*
************************************************************** * POWER & SWR meter on 2x16 char LCD display * * By ON7EQ Aug 2011 * **************************************************************
The circuit: * LCD RS pin to digital pin 7 * LCD Enable pin to digital pin 8 * LCD D4 pin to digital pin 9 * LCD D5 pin to digital pin 10 * LCD D6 pin to digital pin 11 * LCD D7 pin to digital pin 12 * LCD R/W pin to ground * GND to LCD VO pin (pin 3) (contrast) * pin 13 = LCD backlight control (1= backlight ON). Use an emittor follower (like BC639) to control LCD backlight (this draws about 120mA)
* pin 4 = connect a piezo buzzer (other end to ground)
* pin A0 : SWR probe FWD voltage input (SWR bridge type 'MONIMATCH') * pin A1 : SWR probe REFL voltage input
! Set the diode forward voltage in variable 'Diode'. For 1SS99 or other Schottky diodes, it is around 130mV @ 0,1mA
* pin A5 : Power Supply Voltage input
MODE SELECT : there are 2 possibilities to select mode :
1° with 3 position toggle switch:
- pin Digital 2 : 'bip' Sound Switch : when grounded -> SWR 'bip' tone mode
- pin Digital 3 : PEP mode Switch : when grounded -> PEP mode
When switch in center position : normal power/swr mode, instant power & dBm readout When using a center toggle switch, Pin 5 must be connected to +5v If a 3-way toggle switch is present, it will be automatically detected and the variable 'PushButton' set accordingly.
2° with push button for cyling modes:
- pin Digital 5 : Mode push button : when grounded (pulse), next mode is selected
When using a push button, Pins 2 and 3 must be connected to +5v !
! the mode is stored in EEPROM & memorized for next boot
BAND SELECT :
It can be necessary to apply different parameters / calibration factors per band.
- pin Digital 6 : BAND push button : when grounded (pulse), next band is selected
! the band is stored in EEPROM & memorized for next boot
*/
// include the LCD library code:
- include <LiquidCrystal.h>
// include math functions
- include "math.h"
// include EEPROM write
- include <EEPROM.h>
// variables
- define TonePin (4) // Pin for beeper
- define ToneSwitch (2) // one end of 3 way toggle switch
- define PEPswitch (3) // the other end of 3 way toggle switch
- define ModeSwitch (5) // push button switch (no 3 way toggle switch)
- define BANDSwitch (6) // push button switch band change
- define LCDbacklight (13) // output to power the LCD backlight
- define VoltSupplyMini (66) // minimum battery voltage expressed in 100mV (if lower, alarm is generated)
// // for µ7805, minimum 7v required
// voltage divider at A5 - select proper values so that voltage never exceeds 5v on A5 ! // With R1 = 1k2 and R2 = 4k7, max input voltage = 25v
- define R1 (12) // from GND to A5, express in 100R (12 = 1200 Ohm)
- define R2 (47) // from + power supply to A5, express in 100R (47 = 4700 Ohm)
// calibration variables for forward power :
// PowCal=(VoltFWD²/Power) / 1000 (where Power = Power over 50 Ohm in Watt)
// Carry out calibration with sufficient power !
- define PowCalHF (100) // HF band
- define PowCal6m (21) // 6m band
- define PowCal4m (30) // 4m band --> pmax @ 5000mV = 833 W (as example)
- define PowCal2m (117) // 2m band
- define PowCal70 (57) // 70cm band
- define PowCal23 (3165) // 23cm band
- define PowCal13 (64800) // 13cm band
char* myStrings[]={" HF ", " 6m ", " 4m "," 2m ", " 70cm"," 23cm"," 13cm"};
/////////////////////// 3 way-mode switch or pushbutton ? ///////////////////////////////////
int PushButton = (1); // 1 = Pushbutton / 0 = toggle switch
// there is an automatic detection in the display subroutine
////////////////////////////////////////////////////////////////////////////////////////////
// modes byte PEP = (1); // 0 if PEP measured byte Tone = (1); // 0 if tone SWR tune (bip)
byte MODE = (0); // Mode 0 = instant power / Mode 1 = PEP / Mode 2 = Bip byte BAND =(0); // BAND 0 = HF / 1 = 6m / 2 = 4m / 3 = 2m / 4 = 70cm / 5 = 23cm / 6 = 13cm
unsigned long DisplayTime = 0; // timer display refresh unsigned long PeakTime = 0; // timer peak (PEP) detect unsigned long BacklightTime = 0; // backlight LCD hold time unsigned long BandTime = 0; // band display hold time
float VoltFWD = 0; float VoltFWDmax = 0; float VoltPEP = 0; float VoltREF = 0;
unsigned int Diode = 130; // diode forward voltage, expressed in mV
unsigned int PowCal = 103 ; // calibration factor for power: PowCal=(VoltFWD²/Power)*1000 unsigned long PWR = 0; // power (expressed in 100 mW) unsigned int PowDis = 0; // power for display float SWR = 0; // SWR float Vratio = 0; // Voltage ratio VoltREF/VoltFWD
int SWRDis = 0; // power calculation for showing in display
int VoltFWDmini = 0;
unsigned long PWRmax = 0; // the maximum power range, band dependant
int beeponce = (0); // emit only 1 beep for modechange int beepband = (0); // emit only 1 beep for bandchange
int SWRtonePitch = (800); // low lone = low SWR int SWRtoneLenght = (100); // long tone = low SWR
int debugled = (0); // LED at pin13 = debug int decay = (0); // PEP decay rate
unsigned int SupplyVoltage = (0); // Power supply voltage
byte RunOnce =(1); // detect wether in SETUP or LOOP mode byte DisplayCycle = (0); // counts the cycles in display mode (for low volt alert)
// initialize the library with the numbers of the interface pins LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
// ************************************************************* // ******************** S E T U P ************************ // *************************************************************
void setup() {
//setup pins pinMode(LCDbacklight, OUTPUT); //Backlight LCD display pinMode(PEPswitch, INPUT); // if grounded --> 'PEP' mode pinMode(ToneSwitch, INPUT); // if grounded --> 'Bip' mode pinMode(ModeSwitch, INPUT); // if grounded --> cycle through modes pinMode(BANDSwitch, INPUT); // if grounded --> cycle through bands // set up the LCD's number of columns and rows: lcd.begin(16, 2); // READ mode from EEPROM & set parameters MODE = EEPROM.read(1); if (MODE == 0) { // normal instant power & SWR Tone = 1; PEP = 1; } if (MODE == 1) { // Tone tune SWR Tone = 1; PEP = 0; } if (MODE == 2) { // PEP power Tone = 0; PEP = 1; } // READ band from EEPROM BAND = EEPROM.read(2); if (BAND == 0) { BAND = 3; // No HF for time being, default = 2m PowCal = PowCalHF;} if (BAND == 1) { PowCal = PowCal6m;} if (BAND == 2) { PowCal = PowCal4m;} if (BAND == 3) { PowCal = PowCal2m;} if (BAND == 4) { PowCal = PowCal70;} if (BAND == 5) { PowCal = PowCal23;} if (BAND == 6) { PowCal = PowCal13;}
// calculate max range for this band
double PWRmax = pow((5000 + Diode),2) ; PWRmax = PWRmax / PowCal / 1000;
// calculate minimum power for 'SWR < 1.5' indication threshold
// SWR = 1.5 means PWRref / PWRFwd = 0.2 // this means that VoltFWD = diode voltage / SQRT (0.2)
// for threshold SWR = 3 : replace 0.45 by SQRT (0.5) = 0.71
VoltFWDmini = (Diode / 0.45); VoltFWDmini = 2* VoltFWDmini; // safety factor, required in practice
// Print a message to the LCD.
digitalWrite(LCDbacklight,1) ; // turn backlight on lcd.setCursor(0, 0); lcd.print("Pwr & SWR Meter"); lcd.setCursor(0, 1); lcd.print(" 6m - 13cm "); pinMode(TonePin, OUTPUT); tone(TonePin,1200); delay(150); tone(TonePin,1600); delay (150); tone(TonePin,2000); delay (150); noTone (TonePin); delay (2000);
// lcd.setCursor(0, 1); // lcd.print("by ON7EQ 08/2011"); // delay (2000);
//Power SupplyVoltage measure & display
measuresupplyvolt (); delay (1500);
// print max power
lcd.clear(); lcd.setCursor(2, 0); lcd.print("QRV on"); lcd.print( myStrings[BAND]); clearline1(); lcd.setCursor(2, 1); lcd.print("Pmax = ");
// if > 1kw, 1kW is enough :o)
if (PWRmax >= 1000) {
lcd.print(" 1 kW "); }
else {
if (PWRmax < 1) { PowDis = PWRmax * 1000; if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } // if (PowDis < 100) { // lcd.print(" "); // } // if (PowDis< 10) { // lcd.print(" "); // } lcd.print((PowDis), DEC); lcd.print("mW "); } else { PowDis = PWRmax ; //format PowDis if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } // if (PowDis < 100) { // lcd.print(" "); // } // if (PowDis< 10) { // lcd.print(" "); // } lcd.print((PowDis), DEC); lcd.print("w "); }
}
delay (4000); lcd.clear();
// set timers DisplayTime = millis (); BacklightTime = millis ();
} // end of setup
// ************************************************************* // *********************** L O O P ************************ // *************************************************************
void loop() {
RunOnce = 0; // Now we are in loop
// Check if mode to be cycled
if (digitalRead (ModeSwitch) == 0) { // Mode cycle pushbutton depressed
digitalWrite(LCDbacklight, 1) ; // turn backlight on BacklightTime = millis (); //reset timer to light LCD if (beeponce == 0 ) { tone(TonePin,1750); delay (100); tone(TonePin,1000); beeponce = 1; delay (20); } delay (50); // give tone & debounce noTone (TonePin); if (digitalRead (ModeSwitch) == 1) { // released beeponce = 0; MODE = MODE + 1; if (MODE >= 3) MODE = 0; EEPROM.write(1,MODE); // store new mode permanently if (MODE == 0) { // normal instant power & SWR Tone = 1; PEP = 1; } if (MODE == 1) { // Tone tune SWR Tone = 1; PEP = 0; } if (MODE == 2) { // PEP power Tone = 0; PEP = 1; VoltFWDmax = (0); PeakTime = millis (); } } } // Check if band to be cycled if (digitalRead (BANDSwitch) == 0) { // BAND cycle pushbutton depressed
digitalWrite(LCDbacklight, 1) ; // turn backlight on BacklightTime = millis (); //reset timer to light LCD if (beepband == 0 ) { tone(TonePin,1200); delay(100); tone(TonePin,1600); delay (100); tone(TonePin,2000); beepband = 1; delay (50); } delay (50); // give tone & debounce noTone (TonePin); if (digitalRead (BANDSwitch) == 1) { // released beepband = 0; BAND = BAND + 1; if (BAND >= 7) BAND = 1; // set 0 if HF is enabled ! EEPROM.write(2,BAND); // store new mode permanently if (BAND == 0) { //set proper calibration constants PowCal = PowCalHF;} if (BAND == 1) { PowCal = PowCal6m;} if (BAND == 2) { PowCal = PowCal4m;} if (BAND == 3) { PowCal = PowCal2m;} if (BAND == 4) { PowCal = PowCal70;} if (BAND == 5) { PowCal = PowCal23;} if (BAND == 6) { PowCal = PowCal13;} //show band lcd.setCursor(11, 1); lcd.print( myStrings[BAND]); //show Pmax for this band clearline0(); lcd.setCursor(0, 0); lcd.print("Pmax = ");
// calculate max range for this band double PWRmax = pow((5000 + Diode),2) ; PWRmax = PWRmax / PowCal / 1000; // if > 1kw, 1kW is enough :o) if (PWRmax >= 1000) { lcd.print(" 1 kW "); } else { if (PWRmax < 1) { PowDis = PWRmax * 1000; if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } // if (PowDis < 100) { // lcd.print(" "); // } // if (PowDis< 10) { // lcd.print(" "); // } lcd.print((PowDis), DEC); lcd.print("mW "); } else { PowDis = PWRmax ; //format PowDis if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } // if (PowDis < 100) { // lcd.print(" "); // } // if (PowDis< 10) { // lcd.print(" "); // } lcd.print((PowDis), DEC); lcd.print("w "); } } BandTime = millis(); // reset display timer for bandchange display // delay (1000); } } // read sensors
if (PushButton == 0) { // Read 3 way switch
Tone = digitalRead (ToneSwitch); // read tone button PEP = digitalRead (PEPswitch); // read PEP button
}
VoltFWD = analogRead(A0); // Read FWD sensor voltage VoltREF = analogRead(A1); // Read REFL sensor voltage // PEP detect if (VoltFWD > VoltFWDmax) { VoltFWDmax = VoltFWD; PeakTime = millis (); decay = 1; }
// decay
else if ((millis() - PeakTime) > 400) { // 400 = PEP Peak hold time
VoltFWDmax = VoltFWDmax / (decay + 0.3); PeakTime = millis (); decay = decay + 1; //decay }
// LCD refresh if no tone mode if (((millis() - DisplayTime) > 200) and (Tone == 1)){ //200 = display refresh rate in PEP & dBm mode
DisplayTime = millis (); refreshdisplay(); }
if (Tone == 0) { // in tone mode, refresh triggered by tone
decay = 0; refreshdisplay(); }
}
// ========================================================= // ************ Refresh LCD display Routine **************** // =========================================================
void refreshdisplay () {
// check for low battery DisplayCycle = DisplayCycle ++ ; if (DisplayCycle >= 50) { // every 50 display cycles, check battery voltage DisplayCycle = (0); measuresupplyvolt (); } // check if band change and display to hold if (((millis() - BandTime) < 3000)) return; // show band change parameters // Check if toggle switch for mode is present, default is push button if ((digitalRead (ToneSwitch) == 0) or digitalRead (PEPswitch) == 0) { PushButton = (0); // toggle switch is present } // LCD Backlight if (VoltFWD>0) { digitalWrite(LCDbacklight,1) ; // turn backlight on BacklightTime = millis (); //set timer } else if (((millis() - BacklightTime) > 8000)) { // 8 seconds backlight digitalWrite(LCDbacklight, 0) ; // turn backlight off } // Overrange detect if ((VoltFWD>1022) and (digitalRead (ModeSwitch) == 1) ) { lcd.clear(); lcd.setCursor(1, 0); lcd.print("- Overrange -"); lcd.setCursor(2, 1); lcd.print("Pmax = "); // calculate max range for this band double PWRmax = pow((5000 + Diode),2) ; PWRmax = PWRmax / PowCal / 1000; // if P > 1kw, 1kW is enough :o) if (PWRmax >= 1000) { lcd.print(" 1 kW "); } else { if (PWRmax < 1) { // We are measuring milliwatts PowDis = PWRmax * 1000; if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } if (PowDis < 100) { lcd.print(" "); } if (PowDis< 10) { lcd.print(" "); } lcd.print((PowDis), DEC); lcd.print(" mW "); } else { PowDis = PWRmax ; // We are measuring watts //format PowDis if (PowDis > 100) { //round PowDis up to ten PowDis = PowDis / 10; PowDis = PowDis * 10; } if (PowDis < 100) { lcd.print(" "); } if (PowDis< 10) { lcd.print(" "); } lcd.print((PowDis), DEC); lcd.print(" w "); } } tone(TonePin,2500); delay (200) ; noTone(TonePin); if (digitalRead (ModeSwitch) == 1) delay (2000) ; lcd.clear(); return;
}
// process FWD voltage VoltFWD = map(VoltFWD, 0,1023,0,5000); VoltFWD = (VoltFWD + Diode); //correct for diode voltage drop //process REF
VoltREF = map(VoltREF, 0,1023,0,5000); VoltREF = (VoltREF + Diode); //correct for diode voltage drop
// POWER Display lcd.setCursor(0, 0); lcd.print("Pwr "); /* CALIBRATION ROUTINE FORWARD VOLTAGE //////////////////// // This routine prints on LCD the FWD voltage measured. // When no power applied, the FWD voltage displayed will be the diode voltage in mV // To calculate the calibration factor, take the reading (including diode voltage) // Uncomment this routine to enter calibration mode lcd.setCursor(0, 0); lcd.print("VoltFWD= "); lcd.print(VoltFWD, DEC); delay(500); */ ////////////////////////////////////////////////////// //calcultate Power Max, we will need it later double PWRmax = pow((5000 + Diode),2) ; PWRmax = PWRmax / PowCal / 1000; if (PEP == 1) { // Instant POWER MODE double PWR = pow(VoltFWD,2) ; PWR= PWR / PowCal / 1000; if (VoltFWD<(Diode+2)) { PWR = 0; } if (PWRmax < 1) { // milliwatt readout PowDis = PWR * 1000; if (PowDis < 100) { lcd.print(" "); } if (PowDis < 10) { lcd.print(" "); } lcd.print((PowDis), DEC); lcd.print(" mW "); if ((PWR > 0) & (Tone == 1)) { if ((10*log10(PWR*1000)) >= 0) {lcd.print("+");} // + dBm lcd.print(10*log10(PWR*1000)); // dBm calculation } else if (Tone == 1) { lcd.print("(dBm)"); } if (Tone == 0) lcd.print("(Bip)"); } else { PowDis = PWR * 10; if (PowDis/10 < 100) { lcd.print(" "); } if (PowDis/10 < 10) { lcd.print(" "); } lcd.print((PowDis/10), DEC);lcd.print("."); lcd.print((PowDis)%10, DEC); lcd.print("w "); if ((PWR > 0) & (Tone == 1)) { if ((10*log10(PWR*1000)) >= 0) {lcd.print("+");} // + dBm lcd.print(10*log10(PWR*1000)); // dBm calculation } else if (Tone == 1) { lcd.print("(dBm)"); } if (Tone == 0) lcd.print("(Bip)"); } } else if (PEP == 0) { // PEP POWER MODE Tone == 1; // Reset Tone mode VoltPEP = map(VoltFWDmax, 0,1023,0,5000); VoltPEP = (VoltPEP + Diode); //correct for diode voltage double PWR = pow(VoltPEP,2) ; PWR= PWR / PowCal / 1000; if (VoltPEP<(Diode+2)) { PWR = 0; } if (PWRmax < 1) { //milliwatt readout PowDis = PWR * 1000; if (PowDis < 100) { lcd.print(" "); } if (PowDis < 10) { lcd.print(" "); } lcd.print((PowDis), DEC); lcd.print(" mW (PEP)"); } else { PowDis = PWR * 10; if (PowDis/10 < 100) { lcd.print(" "); } if (PowDis/10 < 10) { lcd.print(" "); } lcd.print((PowDis/10), DEC);lcd.print("."); lcd.print((PowDis)%10, DEC); lcd.print("w (PEP)"); } } // SWR Display // print the band lcd.setCursor(11, 1); lcd.print( myStrings[BAND]); lcd.setCursor(0, 1); lcd.print("SWR ");
if ((VoltFWD <= (Diode+2)) or (PEP == 0)) { // No power = no SWR to detect
lcd.print(" -.- "); } else if ( (VoltFWD > (Diode+1)) & (VoltFWD < (VoltFWDmini)) & (VoltREF <= (Diode+1))){ // at low power no SWR display or < 1.5 lcd.print("<1.5 "); } else { Vratio = VoltREF / VoltFWD; // Check ROUTINE //lcd.print(VoltREF, DEC); // DEBUG //lcd.print(Vratio, DEC); // DEBUG SWR = ((1 + Vratio)/ (1 - Vratio)); if ((SWR > 3.1) & (PEP == 1)) { lcd.print(" > 3 "); tone(TonePin,2500); delay (60); noTone(TonePin); } else { SWRDis = SWR * 10; if (SWRDis < 10){ // SWR cannot be lower than 1.0 SWRDis = 10 ; }
if (SWRDis/10 < 10) { lcd.print(" "); } lcd.print((SWRDis/10), DEC);lcd.print("."); lcd.print((SWRDis)%10, DEC); lcd.print(" ");
/// SWR 'Bip' MODE if ((Tone == 0) and (digitalRead (ModeSwitch) == 1)) { SWRtonePitch = map((SWRDis*SWRDis),100,900,300,2200); SWRtoneLenght = map((SWRDis*SWRDis),100,900,300,60); tone(TonePin,SWRtonePitch); delay (SWRtoneLenght); noTone(TonePin); }
} }
if ((Tone == 0) and (digitalRead (ModeSwitch) == 1)){
delay (SWRtoneLenght/3); // leave silence between SWR beeps, only if no mode change required }
}
void clearline0 () { // subroutine clear top line display
lcd.setCursor(0, 0); lcd.print(" ");
}
void clearline1 () { // subroutine clear bottom line display
lcd.setCursor(0, 1); lcd.print(" ");
}
void measuresupplyvolt () { // Power SupplyVoltage measure
SupplyVoltage = analogRead(A5); // Read power supply voltage SupplyVoltage = map(SupplyVoltage, 0,1023,0,(50*(R2+R1)/R1)); if (SupplyVoltage <= 50) return; // not running on batteries ! if (SupplyVoltage >= 84) SupplyVoltage=SupplyVoltage+6 ; // running on ext power, correct for diode voltage drop 0.6v
// print power supply voltage if startup or low battery condition
if ((RunOnce == 1) or (SupplyVoltage <= VoltSupplyMini)) { lcd.clear(); lcd.setCursor(0, 0); lcd.print("Batt Volt="); if (SupplyVoltage < 100) { lcd.print(" "); } if (SupplyVoltage < 10) { lcd.print(" "); } lcd.print((SupplyVoltage/10), DEC); lcd.print("."); lcd.print((SupplyVoltage)%10, DEC); lcd.print("v"); if (SupplyVoltage <= VoltSupplyMini) { lcd.setCursor(2, 1); lcd.print("LOW BATTERY !"); } delay (1500); }
}