Python: NLTK cleaning text
Jump to navigation
Jump to search
Cleaning Text
01 May 2016 Python Data Wrangling
Create some raw text
# Create a list of three strings. incoming_reports = ["We are attacking on their left flank but are losing many men.", "We cannot see the enemy army. Nothing else to report.", "We are ready to attack but are waiting for your orders."]
Seperate by word
# import word tokenizer from nltk.tokenize import word_tokenize # Apply word_tokenize to each element of the list called incoming_reports tokenized_reports = [word_tokenize(report) for report in incoming_reports] # View tokenized_reports tokenized_reports [['We', 'are', 'attacking', 'on', 'their', 'left', 'flank', 'but', 'are', 'losing', 'many', 'men', '.'], ['We', 'can', 'not', 'see', 'the', 'enemy', 'army', '.', 'Nothing', 'else', 'to', 'report', '.'], ['We', 'are', 'ready', 'to', 'attack', 'but', 'are', 'waiting', 'for', 'your', 'orders', '.']] # Import regex import re # Import string import string regex = re.compile('[%s]' % re.escape(string.punctuation)) #see documentation here: http://docs.python.org/2/library/string.html tokenized_reports_no_punctuation = [] for review in tokenized_reports: new_review = [] for token in review: new_token = regex.sub(u, token) if not new_token == u: new_review.append(new_token) tokenized_reports_no_punctuation.append(new_review) tokenized_reports_no_punctuation
[['We', 'are', 'attacking', 'on', 'their', 'left', 'flank', 'but', 'are', 'losing', 'many', 'men'], ['We', 'can', 'not', 'see', 'the', 'enemy', 'army', 'Nothing', 'else', 'to', 'report'], ['We', 'are', 'ready', 'to', 'attack', 'but', 'are', 'waiting', 'for', 'your', 'orders']]
Remove filler words
from nltk.corpus import stopwords tokenized_reports_no_stopwords = [] for report in tokenized_reports_no_punctuation: new_term_vector = [] for word in report: if not word in stopwords.words('english'): new_term_vector.append(word) tokenized_reports_no_stopwords.append(new_term_vector) tokenized_reports_no_stopwords
[['We', 'attacking', 'left', 'flank', 'losing', 'many', 'men'], ['We', 'see', 'enemy', 'army', 'Nothing', 'else', 'report'], ['We', 'ready', 'attack', 'waiting', 'orders']]