Pm4py: COLLAB: analisa bottleneck dari csv
Jump to navigation
Jump to search
Langkah 1: Buka Google Colab
Kunjungi: [1](https://colab.research.google.com)
Langkah 2: Copy-Paste Script Ini ke Colab
# Instalasi PM4Py !pip install -q pm4py
# Import library import pandas as pd import matplotlib.pyplot as plt from pm4py.objects.log.util import dataframe_utils from pm4py.objects.conversion.log import converter as log_converter from pm4py.objects.log.importer.pandas import importer as pandas_importer from pm4py.algo.discovery.dfg import algorithm as dfg_discovery from pm4py.visualization.dfg import visualizer as dfg_visualization from pm4py.algo.analysis.performance_spectrum import algorithm as performance_spectrum # Upload CSV from google.colab import files uploaded = files.upload() # Load CSV filename = list(uploaded.keys())[0] df = pd.read_csv(filename) # Ubah nama kolom agar sesuai dengan PM4Py df.columns = ['case:concept:name', 'concept:name', 'time:timestamp'] df['time:timestamp'] = pd.to_datetime(df['time:timestamp']) # Konversi ke event log df = dataframe_utils.convert_timestamp_columns_in_df(df) log = pandas_importer.apply(df) event_log = log_converter.apply(log, variant=log_converter.Variants.TO_EVENT_LOG) # === ANALISIS DAN VISUALISASI === # # 1. Visualisasi DFG berdasarkan frekuensi dfg_freq = dfg_discovery.apply(event_log, variant=dfg_discovery.Variants.FREQUENCY) dfg_vis = dfg_visualization.apply(dfg_freq, log=event_log, variant=dfg_visualization.Variants.FREQUENCY) dfg_visualization.view(dfg_vis) # 2. Visualisasi bottleneck: Performance Spectrum ps = performance_spectrum.apply(event_log) performance_spectrum.visualize(ps)
Langkah 3: Siapkan File CSV
Format minimal yang dibutuhkan:
case_id,activity,timestamp
Contoh:
1,A,2023-01-01 10:00:00 1,B,2023-01-01 12:00:00 1,C,2023-01-01 13:30:00 2,A,2023-01-01 09:00:00 2,B,2023-01-01 09:45:00 2,C,2023-01-01 11:00:00