PM: Bottleneck Detection
Jump to navigation
Jump to search
Mantap. Aku siapkan script siap-pakai untuk mendeteksi bottleneck dari file XES terlampir (`/mnt/data/BPIC_2012_A.xes`) memakai PM4Py. Script menghitung:
- Service time per aktivitas dari pasangan `lifecycle:start`–`complete`
- Waiting time antar-aktivitas di dalam tiap case
- Ringkasan metrik (mean/median/p95/count) + bottleneck score (gabungan z-score service & waiting)
- Ekspor ke CSV dan tampilkan TOP-N bottleneck
Install (sekali saja)
pip install pm4py pandas numpy
1) Script utama — `bottleneck_pm4py.py`
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import sys from pathlib import Path import numpy as np import pandas as pd from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py import convert_to_dataframe def pair_start_complete(df: pd.DataFrame) -> pd.DataFrame: """Pasangkan start/complete per (case, activity) -> satu baris per eksekusi aktivitas.""" if "lifecycle:transition" not in df.columns: return pd.DataFrame(columns=["case", "activity", "start_time", "complete_time", "service_sec"]) dfl = df.dropna(subset=["lifecycle:transition"]).copy() dfl["transition"] = dfl["lifecycle:transition"].str.lower() dfl = dfl[dfl["transition"].isin(["start", "complete"])] if dfl.empty: return pd.DataFrame(columns=["case", "activity", "start_time", "complete_time", "service_sec"]) dfl = dfl.sort_values(["case:concept:name", "concept:name", "time:timestamp", "transition"]).copy() dfl["start_rank"] = dfl["transition"].eq("start").groupby( [dfl["case:concept:name"], dfl["concept:name"]] ).cumsum() dfl["complete_rank"] = dfl["transition"].eq("complete").groupby( [dfl["case:concept:name"], dfl["concept:name"]] ).cumsum() starts = dfl[dfl["transition"] == "start"].rename(columns={"time:timestamp": "start_time"}) comps = dfl[dfl["transition"] == "complete"].rename(columns={"time:timestamp": "complete_time"}) merged = pd.merge( starts"case:concept:name", "concept:name", "start_rank", "start_time", comps"case:concept:name", "concept:name", "complete_rank", "complete_time", left_on=["case:concept:name", "concept:name", "start_rank"], right_on=["case:concept:name", "concept:name", "complete_rank"], how="inner", ).rename(columns={"case:concept:name": "case", "concept:name": "activity"}) merged["service_sec"] = (merged["complete_time"] - merged["start_time"]).dt.total_seconds() merged = merged[(merged["service_sec"] >= 0) & np.isfinite(merged["service_sec"])] return merged"case", "activity", "start_time", "complete_time", "service_sec" def compute_waiting_times(df: pd.DataFrame, exec_df: pd.DataFrame) -> pd.DataFrame: """ Hitung waiting time antar aktivitas di tiap case. - Jika ada start/complete: tunggu = start(curr) - complete(prev) - Jika tidak ada lifecycle: tunggu = time(curr) - time(prev) """ has_lifecycle = "lifecycle:transition" in df.columns and \ df["lifecycle:transition"].str.lower().isin(["start", "complete"]).any() rows = [] if has_lifecycle and not exec_df.empty: per_case = exec_df.sort_values(["case", "start_time"]) for case, g in per_case.groupby("case"): g = g.sort_values("start_time") prev_complete, prev_act = None, None for _, r in g.iterrows(): if prev_complete is not None: wt = (r["start_time"] - prev_complete).total_seconds() if wt >= 0: rows.append({"case": case, "from_activity": prev_act, "to_activity": r["activity"], "waiting_sec": wt}) prev_complete, prev_act = r["complete_time"], r["activity"] else: # fallback tanpa lifecycle df2 = df.sort_values(["case:concept:name", "time:timestamp"]) for case, g in df2.groupby("case:concept:name"): g = g.sort_values("time:timestamp") prev_time, prev_act = None, None for _, r in g.iterrows(): if prev_time is not None: wt = (r["time:timestamp"] - prev_time).total_seconds() if wt >= 0: rows.append({"case": case, "from_activity": prev_act, "to_activity": r["concept:name"], "waiting_sec": wt}) prev_time, prev_act = r["time:timestamp"], r["concept:name"] if not rows: return pd.DataFrame(columns=["case", "from_activity", "to_activity", "waiting_sec"]) w = pd.DataFrame(rows) return w"case", "from_activity", "to_activity", "waiting_sec" def zscore(series: pd.Series) -> pd.Series: mu = np.nanmean(series) sd = np.nanstd(series, ddof=0) if sd == 0 or np.isnan(sd): return pd.Series(np.zeros(len(series)), index=series.index) return (series - mu) / sd def main(): ap = argparse.ArgumentParser(description="Bottleneck Detection from XES using PM4Py") ap.add_argument("xes_path", type=str, help="Path ke file .xes") ap.add_argument("--top", type=int, default=10, help="Top-N bottleneck yang ditampilkan (default 10)") ap.add_argument("--out", type=str, default="bottlenecks_summary.csv", help="Output CSV ringkasan") args = ap.parse_args() xes_path = Path(args.xes_path) if not xes_path.exists(): print(f"[ERROR] File tidak ditemukan: {xes_path}", file=sys.stderr) sys.exit(1) # 1) Load XES -> DataFrame log = xes_importer.apply(str(xes_path)) df = convert_to_dataframe(log) for c in ["case:concept:name", "concept:name", "time:timestamp"]: if c not in df.columns: print(f"[ERROR] Kolom wajib hilang di event log: {c}", file=sys.stderr) sys.exit(1) df["time:timestamp"] = pd.to_datetime(df["time:timestamp"], errors="coerce") df = df.dropna(subset=["time:timestamp"]).copy() # 2) Service time per aktivitas exec_df = pair_start_complete(df) # 3) Waiting time antar aktivitas wait_df = compute_waiting_times(df, exec_df) # 4) Agregasi per aktivitas if not exec_df.empty: service_stats = exec_df.groupby("activity")["service_sec"].agg( service_mean_sec="mean", service_median_sec="median", service_p95_sec=lambda x: np.nanpercentile(x, 95), service_count="count", ).reset_index() else: service_stats = pd.DataFrame(columns=["activity","service_mean_sec","service_median_sec","service_p95_sec","service_count"]) if not wait_df.empty: wait_stats = wait_df.groupby("to_activity")["waiting_sec"].agg( wait_mean_sec="mean", wait_median_sec="median", wait_p95_sec=lambda x: np.nanpercentile(x, 95), wait_count="count", ).reset_index().rename(columns={"to_activity": "activity"}) else: wait_stats = pd.DataFrame(columns=["activity","wait_mean_sec","wait_median_sec","wait_p95_sec","wait_count"]) summary = pd.merge(service_stats, wait_stats, on="activity", how="outer").fillna(0) # 5) Skor bottleneck (gabungan z-score) summary["z_service"] = zscore(summary["service_mean_sec"]) summary["z_wait"] = zscore(summary["wait_mean_sec"]) summary["z_service_p95"] = zscore(summary["service_p95_sec"]) summary["z_wait_p95"] = zscore(summary["wait_p95_sec"]) summary["bottleneck_score"] = ( 0.4 * summary["z_service"] + 0.4 * summary["z_wait"] + 0.1 * summary["z_service_p95"] + 0.1 * summary["z_wait_p95"] ) summary_sorted = summary.sort_values("bottleneck_score", ascending=False) summary_sorted.to_csv(args.out, index=False) # 6) Tampilkan Top-N ringkas n = min(args.top, len(summary_sorted)) print(f"\n=== TOP {n} BOTTLENECK ACTIVITIES ===") if n == 0: print("Tidak ada aktivitas terdeteksi. Cek struktur log Anda.") sys.exit(0) for _, r in summary_sorted.head(n).iterrows(): print( f"- {r['activity']}: score={r['bottleneck_score']:.3f} | " f"svc_mean={r['service_mean_sec']:.1f}s (p95={r['service_p95_sec']:.1f}s, n={int(r['service_count'])}) | " f"wait_mean={r['wait_mean_sec']:.1f}s (p95={r['wait_p95_sec']:.1f}s, n={int(r['wait_count'])})" ) print(f"\nCSV ringkasan disimpan ke: {args.out}") print("Prioritaskan aktivitas dengan score & p95 tinggi, terutama jika wait_mean besar (antrian).") if __name__ == "__main__": main()
Jalankan ke file terlampir (path sesuai unggahan Anda):
python bottleneck_pm4py.py /mnt/data/BPIC_2012_A.xes --top 15 --out bottlenecks_BPICA.csv
2) (Opsional) Cross-check cepat pakai Performance DFG PM4Py
Ini alternatif ringkas untuk melihat mean waiting time antar-aktivitas (edge) dan sojourn time (di node). Cocok untuk sanity check bottleneck transisi.
#!/usr/bin/env python3 # perf_dfg_quickcheck.py from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.algo.discovery.dfg import algorithm as dfg_discovery from pm4py.statistics.sojourn_time.log import get as soj_get import pandas as pd import sys xes = sys.argv[1] log = xes_importer.apply(xes) # Mean performance DFG (edge durations) perf_dfg = dfg_discovery.apply(log, variant=dfg_discovery.Variants.PERFORMANCE) df_edges = pd.DataFrame( [{"from": a, "to": b, "mean_sec": v} for (a, b), v in perf_dfg.items()] ).sort_values("mean_sec", ascending=False) # Sojourn time per activity (durasi berada di node) soj = soj_get.apply(log) # returns dict {activity: mean_seconds} df_nodes = pd.DataFrame( [{"activity": k, "sojourn_mean_sec": v} for k, v in soj.items()] ).sort_values("sojourn_mean_sec", ascending=False) df_edges.to_csv("perf_dfg_edges.csv", index=False) df_nodes.to_csv("sojourn_nodes.csv", index=False) print("Top 10 edges by mean_sec:") print(df_edges.head(10)) print("\nTop 10 activities by sojourn_mean_sec:") print(df_nodes.head(10))
Jalankan:
python perf_dfg_quickcheck.py /mnt/data/BPIC_2012_A.xes
Catatan penting
- Akurasi service time bergantung pada hadirnya pasangan `lifecycle:start/complete`. Jika dataset hanya punya `complete`, fokuskan interpretasi pada waiting antar event (edge) dan sojourn (node).
- p95 membantu mengungkap ekor panjang (spikes jarang tapi berat) yang sering jadi bottleneck meski mean tidak terlalu tinggi.
- Untuk investigasi mendalam, gabungkan hasil `bottlenecks_summary.csv` dengan variasi per resource, per channel, atau per case attribute (mis. `org:resource`, `org:role`, `application type`, dll.) lalu lakukan groupby tambahan.