LLM: RAG open source no API no Huggingface di google collab

From OnnoWiki
Jump to navigation Jump to search

Creating a Python-based Retrieval-Augmented Generation (RAG) model without using APIs or Huggingface while utilizing Gemini for embeddings and Google Colab for execution involves multiple steps. Below is an outline and example code to guide you:

1. Prerequisites

  • Install Libraries: Install necessary libraries like `transformers`, `faiss-cpu`, and `gensim` for embeddings and retrieval.
  • Data Preparation: Collect and preprocess your corpus for the knowledge base.

2. Code Outline

The pipeline consists of:

  1. Embedding Creation: Use Gemini for embeddings.
  2. Indexing: Use FAISS for indexing embeddings.
  3. Query Processing: Encode the query and find similar documents.
  4. Response Generation: Use a lightweight transformer model like GPT-2 for generation.

3. Example Code

# Install required libraries
!pip install faiss-cpu gensim transformers
import os
import faiss
import numpy as np
from gensim.models import Word2Vec
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Step 1: Prepare your knowledge corpus
corpus = [
    "The capital of France is Paris.",
    "The tallest mountain in the world is Mount Everest.",
    "The Great Wall of China is a series of fortifications made of stone, brick, and other materials."
]
# Step 2: Create embeddings using Gemini (or Word2Vec if Gemini is unavailable)
# Gemini embedding logic (mock example, replace with Gemini's actual logic if available)
def embed_text(texts):
    model = Word2Vec([text.split() for text in texts], vector_size=100, min_count=1)
    embeddings = [np.mean([model.wv[word] for word in text.split() if word in model.wv], axis=0) for text in texts]
    return np.array(embeddings)
embeddings = embed_text(corpus)

# Step 3: Index embeddings with FAISS
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
# Step 4: Define a function for retrieval
def retrieve(query, k=2):
    query_vec = embed_text([query])[0].reshape(1, -1)
    distances, indices = index.search(query_vec, k)
    return [corpus[i] for i in indices[0]]

# Step 5: Response generation using GPT-2
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

def generate_response(context, query):
    input_text = f"Context: {context}\nQuestion: {query}\nAnswer:"
    inputs = tokenizer(input_text, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Step 6: RAG Example
query = "What is the capital of France?"
retrieved_docs = retrieve(query)
context = " ".join(retrieved_docs)
response = generate_response(context, query)

print("Query:", query)
print("Retrieved Context:", context)
print("Response:", response)

Features of the Code

  1. Custom Embedding: Uses `Word2Vec` as a stand-in for Gemini embeddings.
  2. FAISS for Retrieval: Efficient similarity search.
  3. GPT-2 for Generation: Lightweight, no external APIs required.
  4. Google Colab Compatibility: The code can run seamlessly in Colab.


Modifications

  • Replace `Word2Vec` with actual Gemini embeddings if you have access.
  • Adjust hyperparameters for GPT-2 to improve generation quality.
  • Add a larger and more diverse corpus for better performance.