Keras Image Classification
Jump to navigation
Jump to search
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Aug 10 07:51:56 2019 https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d """ import tensorflow as tf (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # import matplotlib.pyplot as plt image_index = 7777 # You may select anything up to 60,000 print(y_train[image_index]) # The label is 8 plt.imshow(x_train[image_index], cmap='Greys')
x_train.shape
# Reshaping the array to 4-dims so that it can work with the Keras API x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) input_shape = (28, 28, 1) # Making sure that the values are float so that we can get decimal points after division x_train = x_train.astype('float32') x_test = x_test.astype('float32') # Normalizing the RGB codes by dividing it to the max RGB value. x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print('Number of images in x_train', x_train.shape[0]) print('Number of images in x_test', x_test.shape[0])
# Importing the required Keras modules containing model and layers from keras.models import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D # Creating a Sequential Model and adding the layers model = Sequential() model.add(Conv2D(28, kernel_size=(3,3), input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) # Flattening the 2D arrays for fully connected layers model.add(Dense(128, activation=tf.nn.relu)) model.add(Dropout(0.2)) model.add(Dense(10,activation=tf.nn.softmax))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x=x_train,y=y_train, epochs=10)
# test / evaluate model model.evaluate(x_test, y_test)
# test image classification image_index = 100 plt.imshow(x_test[image_index].reshape(28, 28),cmap='Greys') pred = model.predict(x_test[image_index].reshape(1, img_rows, img_cols, 1)) print(pred.argmax())