Pm4py: COLLAB: source sederhana data csv
Revision as of 07:27, 29 March 2025 by Onnowpurbo (talk | contribs) (Created page with "=='''Langkah 1: Copy-Paste ke Google Colab'''== # Install PM4Py !pip install -q pm4py # Upload file CSV from google.colab import files uploaded = files.upload() # L...")
Langkah 1: Copy-Paste ke Google Colab
# Install PM4Py !pip install -q pm4py # Upload file CSV from google.colab import files uploaded = files.upload() # Load CSV import pandas as pd df = pd.read_csv(list(uploaded.keys())[0]) # Tampilkan 5 baris pertama print("Contoh isi CSV:") print(df.head())
Langkah 2: Format Ulang & Konversi ke Event Log PM4Py
from pm4py.objects.log.importer.pandas import importer as pandas_importer from pm4py.objects.log.util import dataframe_utils from pm4py.objects.conversion.log import converter as log_converter # Ubah nama kolom agar sesuai dengan standar PM4Py df.columns = ['case:concept:name', 'concept:name', 'time:timestamp'] df['time:timestamp'] = pd.to_datetime(df['time:timestamp']) # Konversi ke event log df = dataframe_utils.convert_timestamp_columns_in_df(df) log_df = pandas_importer.apply(df) event_log = log_converter.apply(log_df, variant=log_converter.Variants.TO_EVENT_LOG)
Langkah 3: Tampilkan Visualisasi Proses Sederhana (DFG)
from pm4py.algo.discovery.dfg import algorithm as dfg_discovery from pm4py.visualization.dfg import visualizer as dfg_visualization # Buat DFG (Directly-Follows Graph) dfg = dfg_discovery.apply(event_log) # Tampilkan visualisasi DFG dfg_vis = dfg_visualization.apply(dfg, log=event_log, variant=dfg_visualization.Variants.FREQUENCY) dfg_visualization.view(dfg_vis)
Catatan Format CSV
CSV kamu minimal harus punya kolom berikut:
case_id,activity,timestamp
Contoh:
1,Start,2023-01-01 08:00:00 1,Process A,2023-01-01 08:30:00 1,Process B,2023-01-01 09:30:00 1,End,2023-01-01 10:00:00