Orange: Manifold Learning

From OnnoWiki
Revision as of 08:54, 29 January 2020 by Onnowpurbo (talk | contribs)
Jump to navigation Jump to search

Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/manifoldlearning.html


Nonlinear dimensionality reduction.

Input

Data: input dataset

Output

Transformed Data: dataset with reduced coordinates

Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.

Manifold-learning-stamped.png


  • Method for manifold learning:
    • t-SNE
    • MDS, see also MDS widget
    • Isomap
    • Locally Linear Embedding
    • Spectral Embedding
  • Set parameters for the method:
    • t-SNE (distance measures):
      • Euclidean distance
      • Manhattan
      • Chebyshev
      • Jaccard
      • Mahalanobis
      • Cosine
    • MDS (iterations and initialization):
      • max iterations: maximum number of optimization interactions
      • initialization: method for initialization of the algorithm (PCA or random)
    • Isomap:
      • number of neighbors
    • Locally Linear Embedding:
      • method:
        • standard
        • modified
        • hessian eigenmap
        • local
      • number of neighbors
      • max iterations
    • Spectral Embedding:
      • affinity:
        • nearest neighbors
        • RFB kernel
  • Output: the number of reduced features (components).
  • If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
  • Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

Collage-manifold.png

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Contoh

Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.

Manifold-learning-example.png


Referensi

Pranala Menarik