OS: Complete Teori Tuning Kernel Scheduler

From OnnoWiki
Jump to navigation Jump to search

Sumber: http://doc.opensuse.org/documentation/html/openSUSE/opensuse-tuning/cha.tuning.taskscheduler.html

Sistem operasi modern biasanya menjalankan tugas-tugas yang berbeda pada waktu yang bersamaan. Misalnya, Anda dapat mencari dalam sebuah file teks sambil menerima e-mail dan menyalin file besar ke hard drive eksternal. Tugas-tugas mudah tersebut memerlukan proses tambahan yang harus dijalankan oleh sistem. Untuk memberikan setiap tugas dengan sumber daya yang diperlukan , kernel Linux membutuhkan alat untuk mendistribusikan sumber daya sistem yang tersedia untuk tugas individu. Dan ini adalah tugas scheduler .

Bagian berikut menjelaskan istilah yang paling penting yang terkait dengan scheduling proses. Disini juga akan diperkenalkan informasi tentang kebijakan task scheduler , algoritma penjadwalan, deskripsi tugas scheduler yang digunakan oleh Linux, dan referensi ke sumber informasi lain yang relevan.

Pendahuluan

Kernel Linux mengontrol cara task (atau proses) dikelola dalam sistem yang berjalan. Task scheduler, kadang-kadang disebut proses scheduler, adalah bagian dari kernel yang memutuskan task mana yang akan di jalankan berikutnya. Task scheduler adalah salah satu komponen inti dari sistem operasi multitasking (seperti Linux), yang bertanggung jawab untuk memanfaatkan sumber daya sistem sebaik-baiknya untuk menjamin bahwa beberapa task dapat berjalan secara bersamaan.

Preemption

Teori di balik task scheduling sangat sederhana. Jika ada proses runnable dalam suatu sistem, setidaknya satu proses harus senantiasa berjalan. Jika ada lebih banyak runnable proses daripada prosesor dalam sistem, tidak semua proses dapat berjalan sepanjang waktu.

Oleh karena itu, beberapa proses perlu dihentikan sementara, atau ditangguhkan, sehingga proses lain dapat berjalan kembali. Task scheduler memutuskan proses mana dalam antrian akan berjalan selanjutnya.

Seperti telah disebutkan, Linux, seperti semua varian Unix lainnya, adalah sistem operasi multitasking. Ini berarti bahwa beberapa task dapat berjalan pada waktu yang sama. Linux menyediakan apa yang disebut preemptive multitasking, di mana Task scheduler memutuskan kapan proses dihentikan. Suspensi secara paksa ini disebut preemption. Semua turunan Unix telah menyediakan preemptive multitasking sejak awal.

Timeslice

Periode waktu yang digunakan suatu proses yang akan berjalan terlebih dulu didefinisikan di awal. Hal ini disebut proses timeslice dan mewakili jumlah waktu prosesor yang diberikan kepada setiap proses. Dengan menetapkan timeslices, scheduler membuat keputusan global untuk sistem berjalan, dan mencegah proses individu untuk mendominasi sumber daya prosesor.

Prioritas Process

Task scheduler mengevaluasi proses berdasarkan prioritas mereka. Untuk menghitung prioritas sebuah proses, Task Scheduler menggunakan algoritma yang komplek. Akibatnya, setiap proses diberi nilai yang berdasarkan nilai tersebiut proses itu "diperbolehkan" untuk berjalan di prosesor.

Klasifikasi Proses

Proses biasanya diklasifikasikan menurut tujuan dan perilaku mereka. Meskipun batas tersebut tidak selalu jelas, umumnya ada dua kriteria yang digunakan untuk menyortir mereka. Kriteria yang independen dan tidak mengecualikan satu sama lain.


Salah satu pendekatan adalah dengan mengklasifikasi sebuah proses apakah sebagai I/O-bound atau processor-bound.

I/O-bound

I/O adalah singkatan dari perangkat Input / Output , seperti keyboard, mouse, atau cakram optik dan harddisk. I/O-bound proses menghabiskan sebagian besar waktu untuk mengajukan dan menunggu permintaan. Mereka berjalan sangat sering, tapi untuk interval waktu yang singkat, tidak untuk memblokir proses-proses lain yang menunggu permintaan I/O.

processor-bound

Di sisi lain, prosesor-bound task menggunakan waktu mereka untuk mengeksekusi kode, dan biasanya dijalankan sampai mereka ditunda eksekusinya oleh Task scheduler. Mereka tidak menghalangi proses yang menunggu permintaan I / O, dan, karenanya, dapat dijalankan lebih jarang tetapi untuk interval waktu yang lebih lama.


Pendekatan lain adalah untuk membagi proses sebagai proses interaktif, batch atau real-time.

Proses Interaktif

Proses interaktif menghabiskan banyak waktu yang menunggu permintaan I / O, seperti operasi keyboard atau mouse. Task scheduler harus membangunkan proses tersebut dengan cepat atas permintaan pengguna, jika tidak pengguna akan menemukan lingkungan tidak tanggap. Penundaan biasanya sekitar 100 ms. Aplikasi office, editor teks atau program manipulasi gambar merupakan contoh aplikasi yang membutuhkan proses interaktif.

Proses Batch

Proses Batch sering berjalan di latar belakang dan tidak perlu responsif. Mereka biasanya mendapat prioritas lebih rendah dari Task scheduler. Konverter multimedia, mesin database pencarian, atau file log analisis adalah contoh dari proses batch.

Proses Real-Time

Proses Real-time tidak harus diblokir oleh proses prioritas rendah, dan Task scheduler menjamin waktu respon singkat kepada mereka. Aplikasi untuk mengedit konten multimedia adalah salah satu contoh-nya.

O(1) Scheduler

Versi kernel Linux 2.6 memperkenalkan Task scheduler baru, yang disebut O (1) scheduler (lihat Big notasi O), itu digunakan sebagai default Task scheduler sampai versi Kernel 2.6.22. Tugas utamanya adalah untuk menjadwalkan task dalam jumlah waktu yang tetap, tidak peduli berapa banyak proses terdapat dalam sistem.

Scheduler menghitung timeslices secara dinamis. Namun, untuk menentukan proses timeslice yang tepat adalah tugas yang kompleks: timeslices Terlalu lama menyebabkan sistem menjadi kurang interaktif dan responsif, sementara yang terlalu pendek membuat prosesor membuang banyak waktu di overhead switching proses yang terlalu sering. proses timeslice standar biasanya agak rendah, misalnya 20ms . scheduler menentukan proses timeslice berdasarkan prioritas dari proses, yang memungkinkan proses dengan prioritas yang lebih tinggi untuk menjalankan lebih sering dan untuk waktu yang lama.

Sebuah proses tidak harus memanfaatkan semua proses timeslice sekaligus. Misalnya, dengan proses timeslice dari 150ms tidak harus berjalan selama 150ms dalam satu kali. Hal ini dapat berjalan di lima slot jadwal yang berbeda untuk 30ms . task interaktif biasanya memperoleh manfaat dari pendekatan ini karena mereka tidak perlu seperti proses timeslice besar sekaligus saat mereka harus responsif selama mungkin.

Scheduler juga menetapkan prioritas proses secara dinamis. Scheduler memonitor perilaku proses dan, jika diperlukan, menyesuaikan prioritas. Sebagai contoh, proses yang diskors untuk waktu yang lama dinyalakan dengan meningkatkan prioritas.

Completely Fair Scheduler (CFQ)

Sejak kernel Linux 2.6.23, pendekatan baru telah dibawa ke proses task scheduling . Completely Fair Scheduler (CFS) menjadi default Linux kernel scheduler. Sejak itu, perubahan-perubahan penting dan perbaikan telah dibuat. Informasi dalam bagian berlaku untuk Linux dengan versi kernel 2.6.32 dan yang lebih tinggi (termasuk kernel 3.x). Lingkungan scheduler dibagi menjadi beberapa bagian, dan tiga fitur utama baru yang diperkenalkan:

Modular Scheduler Core

Inti dari scheduler ditingkatkan dengan kelas task scheduling. Kelas-kelas yang modular dan merepresentasikan kebijakan task scheduling.

Completely Fair Scheduler

Diperkenalkan pada kernel 2.6.23 dan diperpanjang di 2.6.24, CFS mencoba untuk memastikan bahwa setiap proses memperoleh bagian yang "fair" dari waktu prosesor.

Group Scheduling

Misalnya, jika kita membagi proses menjadi kelompok-kelompok yang berdasarkan group tersebut pengguna menjalankan proses tersebut, CFS mencoba untuk memberikan masing-masing kelompok dengan jumlah waktu prosesor yang sama.

Akibatnya, CFS membawa task scheduling lebih dioptimalkan untuk server dan desktop.

Bagaimana CFS Bekerja

CFS mencoba untuk menjamin pendekatan yang adil untuk setiap task . Untuk menemukan cara yang paling seimbang penjadwalan tugas, menggunakan konsep pohon merah-hitam . Sebuah pohon merah-hitam adalah jenis self-balancing pohon pencarian data yang menyediakan memasukkan dan menghapus entri dalam cara yang wajar sehingga tetap seimbang. Untuk informasi lebih lanjut, lihat halaman wiki Pohon Merah-hitam http://en.wikipedia.org/wiki/Red_black_tree.

Ketika task masuk ke dalam antrian run (timeline rencana proses yang akan dieksekusi berikutnya), scheduler mencatat waktu saat tersebut. Saat proses menunggu waktu prosesor, Nilai "wait / tunggu" akan bertambah dengan jumlah yang berasal dari banyaknya task saat ini dalam antrian run dan prioritas proses. Segera setelah prosesor menjalankan tugas, Nilai "wait / tunggu" akan dikurangi. Jika nilai turun di bawah tingkat tertentu, tugas yang ditunda eksekusinya oleh scheduler dan tugas-tugas lain akan menjadi lebih dekat untuk dieksekusi oleh prosesor. Dengan algoritma ini, CFS mencoba untuk mencapai kondisi ideal di mana nilai "wait / tunggu" selalu nol.

Grouping Proses

Sejak kernel Linux 2.6.24, CFS dapat disetel untuk bersikap adil kepada pengguna atau group dan bukan hanya task saja. task runnable kemudian dikelompokkan untuk membentuk entitas, dan CFS mencoba untuk bersikap adil terhadap entitas bukan task individu. scheduler juga mencoba untuk bersikap adil terhadap task individu dalam entitas.

Task dapat dikelompokkan dalam dua kategori yang saling eksklusif:

  • Berdasarkan user ID
  • Berdasarkan kernel control group.

Kernel scheduler kernel memungkinkan kita mengelompokan task tergantung pada pengaturan pilihan kernel compile-time yaitu CONFIG_FAIR_USER_SCHED dan CONFIG_FAIR_CGROUP_SCHED. Pengaturan default biasanya menggunakan group kontrol, yang memungkinkan kita membuat grup sesuai kebutuhan.

Pilihan Konfigurasi Kernel

Basic aspects of the task scheduler behavior can be set through the kernel configuration options. Setting these options is part of the kernel compilation process. Because kernel compilation process is a complex task and out of this document's scope, refer to relevant source of information (for example http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel).

Berbagai Istilah

Dokumen tentang task scheduling policy kadang kala menggunakan beberapa istilah teknik yang perlu kita ketahui dengan benar. Berikut adalaha beberapa diantara istilah tersebut:

Latency

Delay antara waktu sebuah proses di jadwalkan untuk di run vs. waktu eksekusi proses yang sebenarnya.

Granularity

Hubungan antara granularity dengan latency dapat di tulis dengan persamaan berikut:

gran = ( lat / rtasks ) - ( lat / rtasks / rtasks )

dimana

  • gran adalah granularity
  • lat adalah latency
  • rtasks adalah jumlah task yang running / berjalan

Scheduling Policies

Kernel Linux mendukung kebijakan scheduling berikut:

  • SCHED_FIFO - kebijakan scheduling yang di rancang untuk aplikasi yang time-critical. Kebijakan ini menggunakan algoritma scheduling First In-First Out.
  • SCHED_BATCH - kebijakan scheduling di rancang untuk task yang CPU-intensive.
  • SCHED_IDLE - kebijakan scheduling yang di rancang untuk task yang prioritasnya sangat rendah.
  • SCHED_OTHER - kebijakan default Linux time-sharing scheduling yang digunakan oleh sebagian besar proses.
  • SCHED_RR - mirip dengan SCHED_FIFO, tapi menggunakan algoritma Round Robin scheduling.

Mengubah Atribut Real-time dari proses dengan chrt

Perintah chrt digunakan untuk set atau melihat atribute real-time scheduling dari sebuah proses yang sedang running, atau menjalankan sebuah perintah dengan atribut tertentu. Kita dapat mengambil baik kebijakan scheduling maupun prioritas proses.

Pada contoh berikut, sebuah proses dengan PID 11652 akan dijadikan contoh.

Untuk melihat atribut real-time dari task yang ada:

chrt -p 11652

Contoh keluaran:

pid 11652's current scheduling policy: SCHED_OTHER
pid 11652's current scheduling priority: 0

Sebelum menset ke kebijakan scheduling yang baru pada sebuah proses, kita perlu melihat prioritas minimum dan maximum yang valid untuk setiap algoritma scheduling melalui perintah:

chrt -m

Contoh keluaran:

SCHED_OTHER min/max priority	: 0/0
SCHED_FIFO min/max priority	: 1/99
SCHED_RR min/max priority	: 1/99
SCHED_BATCH min/max priority	: 0/0
SCHED_IDLE min/max priority	: 0/0

Pada contoh di atas, kebijakan SCHED_OTHER, SCHED_BATCH, SCHED_IDLE hanya mengijinkan prioritas 0, sementara SCHED_FIFO dan SCHED_RR dapat di set antara 1 sampai dengan 99.

Untuk menset agar menjadi SCHED_BATCH scheduling:

chrt -b -p 0 11652
chrt -p 11652

Contoh keluaran:

pid 11652's current scheduling policy: SCHED_BATCH
pid 11652's current scheduling priority: 0

Untuk info lebih lanjut tentang chrt, kita dapat menulis

chrt -h

Contoh keluaran:

chrt - manipulate real-time attributes of a process

Set policy:
  chrt [options] <policy> <priority> {<pid> | <command> [<arg> ...]}

Get policy:
  chrt [options] {<pid> | <command> [<arg> ...]}

Scheduling policies:
  -b | --batch         set policy to SCHED_BATCH
  -f | --fifo          set policy to SCHED_FIFO
  -i | --idle          set policy to SCHED_IDLE
  -o | --other         set policy to SCHED_OTHER
  -r | --rr            set policy to SCHED_RR (default)

Scheduling flags:
  -R | --reset-on-fork set SCHED_RESET_ON_FORK for FIFO or RR

Options:
  -a | --all-tasks     operate on all the tasks (threads) for a given pid
  -h | --help          display this help
  -m | --max           show min and max valid priorities
  -p | --pid           operate on existing given pid
  -v | --verbose       display status information
  -V | --version       output version information

Tuning Runtime menggunakan sysctl

Interface sysctl dapat digunakan untuk melihat dan mengubah parameter kernel saat runtime yang mana kita dapat mengubah perilaku default dari task scheduler. Sintax dari sysctl sangat sederhana, dan harus di ketik oleh root.

Untuk membaca nilai dari variable kernel, ketik,

sysctl variable

Untuk menset nilai variable, ketik,

sysctl variable=value

Untuk memperoleh daftar dari semua variable sysctl yang berhubungan dengan scheduler, ketik,

sysctl -A | grep "sched" | grep -v "domain"

Contoh hasilnya:

kernel.sched_child_runs_first = 0
kernel.sched_min_granularity_ns = 1500000
kernel.sched_latency_ns = 12000000
kernel.sched_wakeup_granularity_ns = 2000000
kernel.sched_tunable_scaling = 1
kernel.sched_migration_cost = 500000
kernel.sched_nr_migrate = 32
kernel.sched_time_avg = 1000
kernel.sched_shares_window = 10000000
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_autogroup_enabled = 1
kernel.sched_cfs_bandwidth_slice_us = 5000

CATATAN: variable yang di akhiri dengan “_ns” dan “_us” menerima nilai dalam nanosecond dan microsecond.

Dafta dari variable yang paling penting untuk di tuning pada task scheduler terdapat pada /proc/sys/kernel/ dengan penjelasan pendek berikut:

sched_child_runs_first

Fork child dijalankan sebelum parent meneruskan eksekusi. Menset parameter ini menjadi 1 akan menguntungkan untuk aplikasi dimana child menjalankan eksekusi setelah fork. Contoh, make -j <JUMLAH-CPU> akan lebih baik jika sched_child_runs_first dimatikan.

Default adalah 0.

sched_compat_yield

Akan mengaktifkan perilaku yield dari scheduler 0(1) lebih agresif . Aplikasi Java yang secara ekstensif melakukan sinkronisasi akan berjalan lebih baik jika nilai ini di set ke 1. Hanya gunakan ini jika kita melihat drop dalam performance.

Default adalah 0.

Aplikasi yang bergantung pada perilaku syscall sched_yield() akan berjalan lebih baik jika nilai di set menjadi 1.

sched_migration_cost

Lama waktu sesudah eksekusi terakhir dimana sebuah task akan di perhitungkan sebagai "cache hot" dalam keputusan untuk migrasi / perubahan. Sebuah "hot" task akan kemungkinan kecil untuk di migrasi, oleh karenanya menaikan nilai variabel ini akan menurunkan migrasi task.

Default adalah 500000 (ns).

Jika waktu idle CPU lebih tinggi dari yang diharapkan jika ada proses yang bisa di jalankan, coba kecilkan nilai ini. Jika task bounce antara CPU atau node terlalu sering, coba naikan nilai ini.

sched_latency_ns -

Latency preemtion yang di ijinkan untuk task CPU bound. Menaikan nilai variable ini akan menaikan task CPU bound timeslice. Task timeslice diberi bobot pembagi secara fair dalam perioda scheduling:

timeslice = scheduling period * (bobot task/total bobot task di antrian run)

Bobot task tergantung pada level nice task dan kebijakan scheduling. Bobot minimal task untuk task SCHED_OTHER adalah 15, ini sama dengan nice 19. Bobot maximum task adalah 88761, ini sama dengan nice -20.

Semakin kecil timeslice maka load CPU naik. Jika jumlah task yang akan di jalankan melebihi sched_latency_ns/sched_min_granularity_ns, maka timeslice akan menjadi number_of_running_tasks * sched_min_granularity_ns. Sebelum itu terjadi, timeslice akan sama sched_latency_ns.

Nilai ini pada dasarnya mengatur jumlah waktu maksimum untuk sebuah task yang sedang sleeping untuk di perhitungkan dalam kalkulasi ijin run. Menaikan nilai ini akan menaikan jumlah waktu bagi task yang bangun yang dapat di gunakan sebelum di preempted, ini akhirnya akan menaikan scheduler latency untuk task yang CPU bound.

Nilai Default adalah 20000000 (ns).

sched_min_granularity_ns

Minimal preemption granularitas untuk task CPU bound. Baca-baca sched_latency_ns untuk lebih detail.

Nilai default adalah 4000000 (ns).

sched_wakeup_granularity_ns

Granularitas preemption untuk wake-up (bangun). Menaikan nilai variable ini akan mengurangi preemption wake-up, menggurangi gangguan bagi task yang banyak melakukan perhitungan. Menurunkan nilai ini akan memperbaiki latency wake-up dan throughput untuk task penting, terutama jika komponen dengan beban pendek harus berkompetisi dengan komponen CPU bound.

Nilai default adalah 5000000 (ns).

WARNING: Menset lebih besar dari setengah sched_latency_ns akan menyebabkan zero wake-up preemption dan task pendek akan tidak bisa berkompetisi secara effektif dengan task yang memakan CPU.


sched_rt_period_us

Perioda dimana pelaksanaan task real-time di ukur.

Nilai default adalah 1000000 (µs).

sched_rt_runtime_us

Alokasi waktu untuk task real-time (RT) saat sched_rt_period_us. Menset menjadi -1 akan men-disable pelaksanaan waktu real-time (RT).

Nilai default, task real-time (RT) akan mengkonsumsi 95% CPU/detik, oleh karenanya hanya akan menyisakan 5% CPU/detik atau 0.05s untuk digunakan oleh task SCHED_OTHER.

sched_features

Memberikan informasi tentang fitur debugging yang spesifik.


sched_stat_granularity_ns

Menentukan granularitas untuk pengumpulan statistik task scheduler.

sched_nr_migrate

Mengatur berapa task yang dapat di pindahkan antar processor melalui interupsi software migrasi (softirq). Jika sebagian besar task dibuat oleh kebijakan SCHED_OTHER, mereka semua biasakan akan jalan di processor yang sama.

Nilai default adalah 32.

Menaikan nilai ini biasakan akan menaikan performance untuk thread besar pada SCHED_OTHER dengan mengorbankan latency yang lebih tinggi untuk task yang real-time.

Interface Debugging dan Statistik Scheduler

CFS digunakan dengan interface debugging yang baru, dan dapat memberikan informasi statiktik runtime. File yang relevan ada di directory /proc, yang dapat di pelajari hanya dengan printah cat atau less. Sedikit tentang file /proc dan penjelasan pendeknya:

/proc/sched_debug

Berisi nilai saat ini dari semua variabel yang dapat di tuning yang akan mempengaruhi perilaku task scheduler, CFS statistik, dan informasi tentang antrian run di semua processor yang tersedia.

less /proc/sched_debug

Hasilnya kira-kira

Sched Debug Version: v0.10, 3.2.0-29-generic #46-Ubuntu
ktime                                   : 175814713.744739
sched_clk                               : 152754753.141005
cpu_clk                                 : 175814713.743515
jiffies                                 : 4338845974
sched_clock_stable                      : 0

sysctl_sched
  .sysctl_sched_latency                    : 12.000000
  .sysctl_sched_min_granularity            : 1.500000
  .sysctl_sched_wakeup_granularity         : 2.000000
  .sysctl_sched_child_runs_first           : 0
  .sysctl_sched_features                   : 24119
  .sysctl_sched_tunable_scaling            : 1 (logaritmic)

cpu#0, 1296.721 MHz
  .nr_running                    : 2
  .load                          : 771
  .nr_switches                   : 1394812584
  .nr_load_updates               : 16371163
  .nr_uninterruptible            : 795487
  .next_balance                  : 4338.846000
  .curr->pid                     : 4702
  .clock                         : 175814713.750402
  .cpu_load[0]                   : 1024
  .cpu_load[1]                   : 984
  .cpu_load[2]                   : 1048
  .cpu_load[3]                   : 1120
  .cpu_load[4]                   : 1172
  .yld_count                     : 310677
  .sched_switch                  : 0
  .sched_count                   : 1400427770
  .sched_goidle                  : 526715556
  .avg_idle                      : 190439
  .ttwu_count                    : 1213620697
  .ttwu_local                    : 693494658 

cfs_rq[0]:/autogroup-108
  .exec_clock                    : 1084323.602095
  .MIN_vruntime                  : 0.000001
  .min_vruntime                  : 1084318.510901
  .max_vruntime                  : 0.000001
  .spread                        : 0.000000
  .spread0                       : -38610036.626370
  .nr_spread_over                : 0
  .nr_running                    : 0
  .load                          : 0
  .load_avg                      : 2705.524480
.....
rt_rq[0]:/
  .rt_nr_running                 : 0
  .rt_throttled                  : 0
  .rt_time                       : 0.000000
  .rt_runtime                    : 950.000000

runnable tasks:
            task   PID         tree-key  switches  prio     exec-runtime         sum-exec        sum-sleep
----------------------------------------------------------------------------------------------------------
          compiz  2710  24446058.117120   9422853   120  24446058.117120   1192860.567985 173953317.232879 /autogroup-133
R        firefox  4688  24446057.988583  84022061   120  24446057.988583  40996425.370526 131036496.584050 /autogroup-133

/proc/schedstat

Menampilkan statistik relevan terhadap run queue saat itu. Juga domain-spesifik statistik dari sistem SMP untuk semua prosesor yang tersambung. Karena format output tidak terlalu user-friendly, untuk informasi lebih lanjut ada baiknya baca

more /usr/src/linux/Documentation/scheduler/sched-stats.txt

Untuk melihat informasi lebih detail untuk sebuah Proses ID (PID), ketik,

less /proc/PID/sched


   Displays scheduling information on the process with id PID.
   saturn.example.com:~ # cat /proc/`pidof nautilus`/sched
    nautilus (4009, #threads: 1)
    ---------------------------------------------------------
    se.exec_start                      :    2419575150.560531
    se.vruntime                        :      54549795.870151
    se.sum_exec_runtime                :       4867855.829415
    se.avg_overlap                     :             0.401317
    se.avg_wakeup                      :             3.247651
    se.avg_running                     :             0.323432
    se.wait_start                      :             0.000000
    se.sleep_start                     :    2419575150.560531
    [...]
    nr_voluntary_switches              :               938552
    nr_involuntary_switches            :                71872
    se.load.weight                     :                 1024
    policy                             :                    0
    prio                               :                  120
    clock-delta                        :                  109

14.5. For More Information¶

To get a compact knowledge about Linux kernel task scheduling, you need to explore several information sources. Here are some of them:

   For task scheduler System Calls description, see the relevant manual page (for example man 2 sched_setaffinity).
   General information on scheduling is described in Scheduling wiki page.
   General information on Linux task scheduling is described in Inside the Linux scheduler.
   Information specific to Completely Fair Scheduler is available in Multiprocessing with the Completely Fair Scheduler
   Information specific to tuning Completely Fair Scheduler is available in Tuning the Linux Kernel’s Completely Fair Scheduler
   A useful lecture on Linux scheduler policy and algorithm is available in http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf.
   A good overview of Linux process scheduling is given in Linux Kernel Development by Robert Love (ISBN-10: 0-672-32512-8). See http://www.informit.com/articles/article.aspx?p=101760.
   A very comprehensive overview of the Linux kernel internals is given in Understanding the Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).
   Technical information about task scheduler is covered in files under /usr/src/linux/Documentation/scheduler.

Referensi

Pranala Menarik