Difference between revisions of "Orange: Naive Bayes"

From OnnoWiki
Jump to navigation Jump to search
Line 2: Line 2:
  
  
 
+
Klasifikasi probabilistik yang cepat dan sederhana berdasarkan teorema Bayes dengan asumsi independensi feature.
A fast and simple probabilistic classifier based on Bayes’ theorem with the assumption of feature independence.
 
  
 
==Input==
 
==Input==
Line 15: Line 14:
 
  Model: trained model
 
  Model: trained model
  
Naive Bayes learns a Naive Bayesian model from the data. It only works for classification tasks.
+
Widget Naive Bayes mempelajari model Naive Bayesian dari data. Widget ini hanya berfungsi untuk task classification.
  
 
[[File:NaiveBayes-stamped.png|center|200px|thumb]]
 
[[File:NaiveBayes-stamped.png|center|200px|thumb]]

Revision as of 15:18, 6 March 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/naivebayes.html


Klasifikasi probabilistik yang cepat dan sederhana berdasarkan teorema Bayes dengan asumsi independensi feature.

Input

Data: input dataset
Preprocessor: preprocessing method(s)

Output

Learner: naive bayes learning algorithm
Model: trained model

Widget Naive Bayes mempelajari model Naive Bayesian dari data. Widget ini hanya berfungsi untuk task classification.

NaiveBayes-stamped.png

This widget has two options: the name under which it will appear in other widgets and producing a report. The default name is Naive Bayes. When you change it, you need to press Apply.

Contoh

Here, we present two uses of this widget. First, we compare the results of the Naive Bayes with another model, the Random Forest. We connect iris data from File to Test & Score. We also connect Naive Bayes and Random Forest to Test & Score and observe their prediction scores.

NaiveBayes-classification.png

The second schema shows the quality of predictions made with Naive Bayes. We feed the Test & Score widget a Naive Bayes learner and then send the data to the Confusion Matrix. We also connect Scatter Plot with File. Then we select the misclassified instances in the Confusion Matrix and show feed them to Scatter Plot. The bold dots in the scatterplot are the misclassified instances from Naive Bayes.

NaiveBayes-visualize.png

Referensi

Pranala Menarik