Difference between revisions of "Orange: Moving Transform"

From OnnoWiki
Jump to navigation Jump to search
Line 3: Line 3:
  
  
Apply rolling window functions to the time series. Use this widget to get a series’ mean.
+
Terapkan fungsi rolling window ke time series. Gunakan widget ini untuk mendapatkan rata nilai dari series.
  
 
==Input==
 
==Input==
Line 13: Line 13:
 
  Time series: The input time series with the added series’ transformations.
 
  Time series: The input time series with the added series’ transformations.
  
In this widget, you define what aggregation functions to run over the time series and with what window sizes.
+
Dalam widget ini, anda menentukan fungsi agregasi apa yang harus dijalankan dalam time series dan dengan ukuran windows berapa.
  
 
[[File:Moving-transform-stamped.png|center|200px|thumb]]
 
[[File:Moving-transform-stamped.png|center|200px|thumb]]
Line 27: Line 27:
 
==Example==
 
==Example==
  
To get a 5-day moving average, we can use a rolling window with mean aggregation.
+
Untuk memperoleh 5-day moving average, kita dapat menggunakan rolling window dengan mean aggregation.
  
 
[[File:Moving-transform-ex1.png|center|200px|thumb]]
 
[[File:Moving-transform-ex1.png|center|200px|thumb]]
  
To integrate time series’ differences from Difference widget, use Cumulative sum aggregation over a window wide enough to grasp the whole series.
+
Untuk mengintegralkan time series’ difference dari Difference widget, gunakan Cumulative sum aggregation pada window yang cukup lebar untuk menangkap keseluruhan series.
  
 
[[File:Moving-transform-ex2.png|center|200px|thumb]]
 
[[File:Moving-transform-ex2.png|center|200px|thumb]]

Revision as of 11:35, 22 February 2020

Sumber: https://orange.biolab.si/widget-catalog/time-series/moving_transform/


Terapkan fungsi rolling window ke time series. Gunakan widget ini untuk mendapatkan rata nilai dari series.

Input

Time series: Time series as output by As Timeseries widget.

Output

Time series: The input time series with the added series’ transformations.

Dalam widget ini, anda menentukan fungsi agregasi apa yang harus dijalankan dalam time series dan dengan ukuran windows berapa.

Moving-transform-stamped.png
  • Define a new transformation.
  • Remove the selected transformation.
  • Time series you want to run the transformation over.
  • Desired window size.
  • Aggregation function to aggregate the values in the window with. Options are: mean, sum, max, min, median, mode, standard deviation, variance, product, linearly-weighted moving average, exponential moving average, harmonic mean, geometric mean, non-zero count, cumulative sum, and cumulative product.
  • Select Non-overlapping windows options if you don’t want the moving windows to overlap but instead be placed side-to-side with zero intersection.
  • In the case of non-overlapping windows, define the fixed window width(overrides and widths set in (4).

Example

Untuk memperoleh 5-day moving average, kita dapat menggunakan rolling window dengan mean aggregation.

Moving-transform-ex1.png

Untuk mengintegralkan time series’ difference dari Difference widget, gunakan Cumulative sum aggregation pada window yang cukup lebar untuk menangkap keseluruhan series.

Moving-transform-ex2.png


Referensi

Pranala Menarik