Difference between revisions of "Orange: Stacking"

From OnnoWiki
Jump to navigation Jump to search
Line 20: Line 20:
 
[[File:Stacking-stamped.png|center|200px|thumb]]
 
[[File:Stacking-stamped.png|center|200px|thumb]]
  
    The meta learner can be given a name under which it will appear in other widgets. The default name is “Stack”.
+
* The meta learner can be given a name under which it will appear in other widgets. The default name is “Stack”.
    Click Apply to commit the aggregated model. That will put the new learner in the output and, if the training examples are given, construct a new model and output it as well. To communicate changes automatically tick Apply Automatically.
+
* Click Apply to commit the aggregated model. That will put the new learner in the output and, if the training examples are given, construct a new model and output it as well. To communicate changes automatically tick Apply Automatically.
    Access help and produce a report.
+
* Access help and produce a report.
  
 
==Contoh==
 
==Contoh==

Revision as of 11:32, 28 January 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/stacking.html


Stack multiple models.

Input

Data: input dataset
Preprocessor: preprocessing method(s)
Learners: learning algorithm
Aggregate: model aggregation method

Output

Learner: aggregated (stacked) learning algorithm
   Model: trained model

Stacking is an ensemble method that computes a meta model from several base models. The Stacking widget has the Aggregate input, which provides a method for aggregating the input models. If no aggregation input is given the default methods are used. Those are Logistic Regression for classification and Ridge Regression for regression problems.

Stacking-stamped.png
  • The meta learner can be given a name under which it will appear in other widgets. The default name is “Stack”.
  • Click Apply to commit the aggregated model. That will put the new learner in the output and, if the training examples are given, construct a new model and output it as well. To communicate changes automatically tick Apply Automatically.
  • Access help and produce a report.

Contoh

We will use Paint Data to demonstrate how the widget is used. We painted a complex dataset with 4 class labels and sent it to Test & Score. We also provided three kNN learners, each with a different parameters (number of neighbors is 5, 10 or 15). Evaluation results are good, but can we do better?

Let’s use Stacking. Stacking requires several learners on the input and an aggregation method. In our case, this is Logistic Regression. A constructed meta learner is then sent to Test & Score. Results have improved, even if only marginally. Stacking normally works well on complex data sets.

Stacking-Example.png


Referensi

Pranala Menarik