Difference between revisions of "Hadoop: Menjalankan MapReduce Job"
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
Line 125: | Line 125: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Referensi== | ==Referensi== | ||
* http://www.bogotobogo.com/Hadoop/BigData_hadoop_Running_MapReduce_Job.php | * http://www.bogotobogo.com/Hadoop/BigData_hadoop_Running_MapReduce_Job.php |
Revision as of 15:00, 9 November 2015
Sumber: http://www.bogotobogo.com/Hadoop/BigData_hadoop_Running_MapReduce_Job.php
Persiapan MapReduce
Sebelum kita melompat ke dalam pemrograman MapReduce, kita mungkin perlu untuk membicarakan langkah-langkah persiapan yang biasa diambil. Karena MapReduce biasanya beroperasi pada data yang besar, kita perlu mempertimbangkan langkah-langkah sebelum kita benar-benar melakukan MapReduce itu.
Struktur yang mendasari filesystem HDFS sangat berbeda dari sistem file normal kami. Ukuran blok yang sedikit lebih besar, dan ukuran blok yang sebenarnya untuk cluster kami tergantung pada konfigurasi cluster seperti yang ditunjukkan pada gambar di bawah: 64, 128, atau 256 MB. Jadi, kita mungkin perlu memiliki blok dengan dipartisi yang dikustomisasi.
Sumber Gambar : Hadoop MapReduce Fundamentals.
Pertimbangan lain adalah di mana kita akan mengambil data kita dalam rangka untuk melakukan operasi MapReduce atau pemrosesan paralel di atasnya. Meskipun kami akan bekerja dengan Hadoop filesystem, kita dapat mengeksekusi algoritma MapReduce terhadap informasi yang tersimpan di lokasi yang berbeda dengan filesystem native, penyimpanan awan seperti Amazon S3 bucket, atau Windows Azure blob.
Pertimbangan lain adalah output dari MapReduce hasil pekerjaan yang berubah. Jadi, output kami adalah one-time output, dan ketika keluaran baru yang dihasilkan, kita memiliki nama file baru untuk itu.
Pertimbangan terakhir dalam mempersiapkan MapReduce adalah tentang logika yang akan kita tulis, dan harus sesuai dengan situasi yang akan kita atasi. Kita akan menulis logika dalam beberapa bahasa pemrograman, perpustakaan, atau alat untuk memetakan data, dan kemudian mengurangi, dan kemudian kita memiliki beberapa output.
Perhatikan juga bahwa kita akan bekerja dengan pasangan kunci-nilai, sehingga terlepas dari format data yang masuk, kami ingin menampilkan pasangan kunci-nilai.
Perintah Shell Hadoop
Sebelum menjalankan Job MapReduce, kita perlu mengetahui beberapa perintah shell Hadoop. Ada baiknya membaca
Menjalankan MapReduce Job
Lakukan
cd /usr/local/hadoop ls
bin include libexec logs README.txt share etc lib LICENSE.txt NOTICE.txt sbin
Jalankan
hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar pi 2 5
Number of Maps = 2 Samples per Map = 5 14/07/14 01:28:02 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Wrote input for Map #0 Wrote input for Map #1 Starting Job 14/07/14 01:28:07 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id 14/07/14 01:28:07 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId= 14/07/14 01:28:07 INFO input.FileInputFormat: Total input paths to process : 2 14/07/14 01:28:07 INFO mapreduce.JobSubmitter: number of splits:2 14/07/14 01:28:09 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1228885165_0001 ... File Input Format Counters Bytes Read=236 File Output Format Counters Bytes Written=97 Job Finished in 6.072 seconds Estimated value of Pi is 3.60000000000000000000
Hadoop FileSystem (HDFS)
File disimpan dalam Hadoop Distributed File System (HDFS). Misalkan kita akan menyimpan file bernama data.txt di HDFS.
File ini adalah 160 megabyte. Ketika sebuah file dimuat ke HDFS, itu dibagi menjadi potongan yang disebut blok. Ukuran default setiap blok adalah 64 megabyte. Setiap blok diberi nama yang unik, yang merupakan blk, garis bawah, dan sejumlah besar. Dalam kasus kami, blok pertama adalah 64 megabyte. Blok kedua adalah 64 megabyte. Blok ketiga adalah sisa 32 megabyte, untuk membuat file yang 160 megabyte.
Saat file diupload ke HDFS, setiap blok akan bisa disimpan di salah satu node di cluster. Ada Daemon berjalan pada masing-masing mesin dalam cluster, yang disebut DataNode. Sekarang, kita perlu tahu mana blok membuat file asli. Dan itu ditangani oleh mesin terpisah, menjalankan Daemon yang disebut NameNode. Informasi yang disimpan pada NameNode dikenal sebagai Metadata.
Perintah HDFS
Saat Hadoop jalan, mari membuat hdfsTest.txt di home directory kita:
echo "hdfs test" > hdfsTest.txt
Kemudian, kita ingin membuat Home Directory di HDFS :
hadoop fs -mkdir -p /user/hduser
kita dapat mengcopy file hdfsTest.txt dari local disk ke user directory di HDFS:
hadoop fs -copyFromLocal hdfsTest.txt hdfsTest.txt
Kita juga dapat menggunakan put selain copyFromLocal:
hadoop fs -put hdfsTest.txt
Lihat isi directory dari user home directory di HDFS:
hadoop fs -ls
Found 1 items -rw-r--r-- 1 hduser supergroup 5 2014-07-14 01:49 hdfsTest.txt
Jika kita ingin melihat isi file HDFS /user/hduser/hdfsTest.txt:
hadoop fs -cat /user/hduser/hdfsTest.txt
Kita juga dapat mengcopy file ke local disk dari HDFS, dimakan sebagai hdfsTest2.txt :
hadoop fs -copyToLocal /user/hduser/hdfsTest.txt hdfsTest2.txt
ls hdfsTest2.txt hdfsTest.txt
Untuk men-delete file dari Hadoop HDFS:
hadoop fs -rm hdfsTest.txt
hadoop fs -ls