Difference between revisions of "Orange: Linear Regression"

From OnnoWiki
Jump to navigation Jump to search
Line 2: Line 2:
  
  
Sebuah algoritma linear regression dengan regularisasi optional L1 (LASSO), L2 (ridge) atau L1L2 (elastic net).
+
Widget Linear Regression mengimplementasikan sebuah algoritma linear regression dengan regularisasi optional L1 (LASSO), L2 (ridge) atau L1L2 (elastic net).
  
 
==Input==
 
==Input==
Line 17: Line 17:
 
Widget Linear Regression membangun learner/predictor yang akan learn fungsi linear function dari input data-nya. Model dapat mengidentifikasi hubungan antara predictor xi dan response variable y. Di samping itu, parameter regularisasi Lasso and Ridge dapat di spesifikasikan. Lasso regression meminimalisasi penalized version dari least squares loss function dengan L1-norm penalty sedangkan regularisai Ridge dengan L2-norm penalty.
 
Widget Linear Regression membangun learner/predictor yang akan learn fungsi linear function dari input data-nya. Model dapat mengidentifikasi hubungan antara predictor xi dan response variable y. Di samping itu, parameter regularisasi Lasso and Ridge dapat di spesifikasikan. Lasso regression meminimalisasi penalized version dari least squares loss function dengan L1-norm penalty sedangkan regularisai Ridge dengan L2-norm penalty.
  
Linear regression hanya dapat berfungsi / bekerja pada task regression.
+
Widget Linear regression hanya dapat berfungsi / bekerja pada task regression.
  
 
[[File:LinearRegression-stamped.png|center|200px|thumb]]
 
[[File:LinearRegression-stamped.png|center|200px|thumb]]

Revision as of 17:23, 5 April 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/linearregression.html


Widget Linear Regression mengimplementasikan sebuah algoritma linear regression dengan regularisasi optional L1 (LASSO), L2 (ridge) atau L1L2 (elastic net).

Input

Data: input dataset
Preprocessor: preprocessing method(s)

Output

Learner: linear regression learning algorithm
Model: trained model
Coefficients: linear regression coefficients

Widget Linear Regression membangun learner/predictor yang akan learn fungsi linear function dari input data-nya. Model dapat mengidentifikasi hubungan antara predictor xi dan response variable y. Di samping itu, parameter regularisasi Lasso and Ridge dapat di spesifikasikan. Lasso regression meminimalisasi penalized version dari least squares loss function dengan L1-norm penalty sedangkan regularisai Ridge dengan L2-norm penalty.

Widget Linear regression hanya dapat berfungsi / bekerja pada task regression.

LinearRegression-stamped.png
  • The learner/predictor name
  • Choose a model to train:
    • no regularization
    • a Ridge regularization (L2-norm penalty)
    • a Lasso bound (L1-norm penalty)
    • an Elastic net regularization
  • Produce a report.
  • Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Contoh

Di bawah ini adalah workflow sederhana dengan housing dataset. Kita men-train widget Linear Regression dan widget Random Forest dan mengevaluasi performance-nya di widget Test & Score.

LinearRegression-regression.png

Referensi

Pranala Menarik