Difference between revisions of "Orange: Louvain Clustering"

From OnnoWiki
Jump to navigation Jump to search
Line 1: Line 1:
 
Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/louvainclustering.html
 
Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/louvainclustering.html
  
roups items using the Louvain clustering algorithm.
+
Mengelompokan item menggunakan algoritma Louvain clustering.
  
 
==Input==
 
==Input==
Line 12: Line 12:
 
  Graph (with the Network addon): the weighted k-nearest neighbor graph
 
  Graph (with the Network addon): the weighted k-nearest neighbor graph
  
The widget first converts the input data into a k-nearest neighbor graph. To preserve the notions of distance, the Jaccard index for the number of shared neighbors is used to weight the edges. Finally, a modularity optimization community detection algorithm is applied to the graph to retrieve clusters of highly interconnected nodes. The widget outputs a new dataset in which the cluster index is used as a meta attribute.
+
Widget mengubah data input menjadi k-nearest neighbor graph. Untuk mempertahankan gagasan distance, Jaccard index untuk jumlah shared tetangga digunakan untuk menentukan batas (edge). Akhirnya, algoritma pendeteksian optimisasi komunitas modularitas diterapkan pada graph untuk memperoleh cluster dari node yang highly interconnected. Widget mengeluarkan set data baru di mana icluster index digunakan sebagai atribut meta.
  
 
[[File:Louvain-stamped.png|center|200px|thumb]]
 
[[File:Louvain-stamped.png|center|200px|thumb]]

Revision as of 11:54, 5 March 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/louvainclustering.html

Mengelompokan item menggunakan algoritma Louvain clustering.

Input

Data: input dataset

Output

Data: dataset with cluster index as a class attribute
Graph (with the Network addon): the weighted k-nearest neighbor graph

Widget mengubah data input menjadi k-nearest neighbor graph. Untuk mempertahankan gagasan distance, Jaccard index untuk jumlah shared tetangga digunakan untuk menentukan batas (edge). Akhirnya, algoritma pendeteksian optimisasi komunitas modularitas diterapkan pada graph untuk memperoleh cluster dari node yang highly interconnected. Widget mengeluarkan set data baru di mana icluster index digunakan sebagai atribut meta.

Louvain-stamped.png
  • PCA processing is typically applied to the original data to remove noise.
  • The distance metric is used for finding specified number of nearest neighbors.
  • The number of nearest neighbors to use to form the KNN graph.
  • Resolution is a parameter for the Louvain community detection algorithm that affects the size of the recovered clusters. Smaller resolutions recover smaller, and therefore a larger number of clusters, and conversely, larger values recover clusters containing more data points.
  • When Apply Automatically is ticked, the widget will automatically communicate all changes. Alternatively, click Apply.

Contoh

Louvain Clustering converts the dataset into a graph, where it finds highly interconnected nodes. We can visualize the graph itself using the Network Explorer from the Network addon.

Louvain-Example.png

Referensi

Blondel, Vincent D., et al. “Fast unfolding of communities in large networks.” Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

Lambiotte, Renaud, J-C. Delvenne, and Mauricio Barahona. “Laplacian dynamics and multiscale modular structure in networks.” arXiv preprint, arXiv:0812.1770 (2008).


Referensi

Pranala Menarik