Difference between revisions of "R: sentiments analysis"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
| Line 45: | Line 45: | ||
| + | |||
| + | pride_prejudice <- tidy_books %>% | ||
| + | filter(book == "Pride & Prejudice") | ||
| + | pride_prejudice | ||
| + | |||
| + | |||
| + | |||
| + | afinn <- pride_prejudice %>% | ||
| + | inner_join(get_sentiments("afinn")) %>% | ||
| + | group_by(index = linenumber %/% 80) %>% | ||
| + | summarise(sentiment = sum(score)) %>% | ||
| + | mutate(method = "AFINN") | ||
| + | bing_and_nrc <- bind_rows( | ||
| + | pride_prejudice %>% | ||
| + | inner_join(get_sentiments("bing")) %>% | ||
| + | mutate(method = "Bing et al."), | ||
| + | pride_prejudice %>% | ||
| + | inner_join(get_sentiments("nrc") %>% | ||
| + | filter(sentiment %in% c("positive", | ||
| + | "negative"))) %>% | ||
| + | mutate(method = "NRC")) %>% | ||
| + | count(method, index = linenumber %/% 80, sentiment) %>% | ||
| + | spread(sentiment, n, fill = 0) %>% | ||
| + | mutate(sentiment = positive - negative) | ||
| + | |||
| + | |||
| + | bind_rows(afinn, | ||
| + | bing_and_nrc) %>% | ||
| + | ggplot(aes(index, sentiment, fill = method)) + | ||
| + | geom_col(show.legend = FALSE) + | ||
| + | facet_wrap(~method, ncol = 1, scales = "free_y") | ||
Revision as of 17:21, 8 November 2018
library(tidytext) sentiments
get_sentiments("afinn")
get_sentiments("bing")
get_sentiments("nrc")
library(janeaustenr)
library(dplyr)
library(stringr)
tidy_books <- austen_books() %>%
group_by(book) %>%
mutate(linenumber = row_number(),
chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",
ignore_case = TRUE)))) %>%
ungroup() %>%
unnest_tokens(word, text)
nrcjoy <- get_sentiments("nrc") %>%
filter(sentiment == "joy")
tidy_books %>%
filter(book == "Emma") %>%
inner_join(nrcjoy) %>%
count(word, sort = TRUE)
library(tidyr)
janeaustensentiment <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)
library(ggplot2)
ggplot(janeaustensentiment, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free_x")
pride_prejudice <- tidy_books %>%
filter(book == "Pride & Prejudice")
pride_prejudice
afinn <- pride_prejudice %>%
inner_join(get_sentiments("afinn")) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum(score)) %>%
mutate(method = "AFINN")
bing_and_nrc <- bind_rows(
pride_prejudice %>%
inner_join(get_sentiments("bing")) %>%
mutate(method = "Bing et al."),
pride_prejudice %>%
inner_join(get_sentiments("nrc") %>%
filter(sentiment %in% c("positive",
"negative"))) %>%
mutate(method = "NRC")) %>%
count(method, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)
bind_rows(afinn,
bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = "free_y")