Difference between revisions of "Text Mining: Sentiment Classifier"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Onnowpurbo (talk | contribs)  | 
				Onnowpurbo (talk | contribs)   | 
				||
| Line 9: | Line 9: | ||
* SentiWordNet http://sentiwordnet.isti.cnr.it  | * SentiWordNet http://sentiwordnet.isti.cnr.it  | ||
| − | + | ==Cara Install==  | |
| − | + | Perintah shell  | |
| − | python setup.py install  | + |  python setup.py install  | 
| − | + | ==Dokumen==  | |
| − | + | ||
| − | + |  http://readthedocs.org/docs/sentiment_classifier/en/latest/  | |
     Try Online  |      Try Online  | ||
| − | + | ==Penggunaan==  | |
| − | + | Perintah shell  | |
  senti_classifier -c file/with/review.txt  |   senti_classifier -c file/with/review.txt  | ||
| − | Python   | + | ==Penggunaan Python==  | 
| − | + | Perintah shell  | |
  cd sentiment_classifier/src/senti_classifier/  |   cd sentiment_classifier/src/senti_classifier/  | ||
  python senti_classifier.py -c reviews.txt  |   python senti_classifier.py -c reviews.txt  | ||
| − | Library   | + | ==Penggunaan Library==  | 
  from senti_classifier import senti_classifier  |   from senti_classifier import senti_classifier  | ||
| Line 39: | Line 39: | ||
  pos_score, neg_score = senti_classifier.polarity_scores(sentences)  |   pos_score, neg_score = senti_classifier.polarity_scores(sentences)  | ||
  print pos_score, neg_score  |   print pos_score, neg_score  | ||
| − | |||
| − | |||
| − | |||
Revision as of 09:21, 3 February 2017
Sentiment Classifier menggunakan Word Sense Disambiguation menggunakan WordNet dan statistik terjadinya kata dari corpus movie review NLTK. Mengklasifikasikan ke dalam kategori positif dan negatif.
Persyaratan
- Python 2.6.
 - NLTK http://www.nltk.org 2.0
 - NumPy http://numpy.scipy.org
 - SentiWordNet http://sentiwordnet.isti.cnr.it
 
Cara Install
Perintah shell
python setup.py install
Dokumen
http://readthedocs.org/docs/sentiment_classifier/en/latest/ Try Online
Penggunaan
Perintah shell
senti_classifier -c file/with/review.txt
Penggunaan Python
Perintah shell
cd sentiment_classifier/src/senti_classifier/ python senti_classifier.py -c reviews.txt
Penggunaan Library
from senti_classifier import senti_classifier sentences = ['The movie was the worst movie', 'It was the worst acting by the actors'] pos_score, neg_score = senti_classifier.polarity_scores(sentences) print pos_score, neg_score