Difference between revisions of "Hadoop: Hive untuk Query SQL"

From OnnoWiki
Jump to navigation Jump to search
Line 1: Line 1:
 
Sumber: http://hortonworks.com/hadoop/hive/
 
Sumber: http://hortonworks.com/hadoop/hive/
  
==What Hive Does==
+
==Apakah Hive==
  
Hadoop was built to organize and store massive amounts of data of all shapes, sizes and formats. Because of Hadoop’s “schema on read” architecture, a Hadoop cluster is a perfect reservoir of heterogeneous data—structured and unstructured—from a multitude of sources.
+
Hadoop dibangun untuk mengatur dan menyimpan sejumlah besar data dari berbagai bentuk, ukuran dan format. Karena arsitektur Hadoop "schema on read" arsitektur, cluster Hadoop adalah reservoir sempurna data-terstruktur dan tidak terstruktur-dari banyak sumber yang heterogen.
  
Data analysts use Hive to explore, structure and analyze that data, then turn it into actionable business insight.
+
Analis data yang menggunakan Hive untuk mengeksplorasi, struktur dan menganalisis data itu, lalu mengubahnya menjadi wawasan bisnis yang dapat ditindaklanjuti.
  
Advantages of using Hive for enterprise SQL in Hadoop:
+
Keuntungan menggunakan Hive untuk enterprise SQL di Hadoop:
  
 
  Feature Description
 
  Feature Description
Line 13: Line 13:
 
  Fast         Interactive response times, even over huge datasets
 
  Fast         Interactive response times, even over huge datasets
 
  Scalable and Extensible As data variety and volume grows, more commodity machines can be added, without a corresponding reduction in performance
 
  Scalable and Extensible As data variety and volume grows, more commodity machines can be added, without a corresponding reduction in performance
 
  
 
==How Hive Works==
 
==How Hive Works==

Revision as of 07:52, 14 November 2015

Sumber: http://hortonworks.com/hadoop/hive/

Apakah Hive

Hadoop dibangun untuk mengatur dan menyimpan sejumlah besar data dari berbagai bentuk, ukuran dan format. Karena arsitektur Hadoop "schema on read" arsitektur, cluster Hadoop adalah reservoir sempurna data-terstruktur dan tidak terstruktur-dari banyak sumber yang heterogen.

Analis data yang menggunakan Hive untuk mengeksplorasi, struktur dan menganalisis data itu, lalu mengubahnya menjadi wawasan bisnis yang dapat ditindaklanjuti.

Keuntungan menggunakan Hive untuk enterprise SQL di Hadoop:

Feature 	Description
Familiar 	Query data with a SQL-based language
Fast 	        Interactive response times, even over huge datasets
Scalable and Extensible 	As data variety and volume grows, more commodity machines can be added, without a corresponding reduction in performance

How Hive Works

The tables in Hive are similar to tables in a relational database, and data units are organized in a taxonomy from larger to more granular units. Databases are comprised of tables, which are made up of partitions. Data can be accessed via a simple query language and Hive supports overwriting or appending data.

Within a particular database, data in the tables is serialized and each table has a corresponding Hadoop Distributed File System (HDFS) directory. Each table can be sub-divided into partitions that determine how data is distributed within sub-directories of the table directory. Data within partitions can be further broken down into buckets.

Hive supports all the common primitive data formats such as BIGINT, BINARY, BOOLEAN, CHAR, DECIMAL, DOUBLE, FLOAT, INT, SMALLINT, STRING, TIMESTAMP, and TINYINT. In addition, analysts can combine primitive data types to form complex data types, such as structs, maps and arrays.





Referensi