Difference between revisions of "Orange: Moving Transform"

From OnnoWiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
  
Apply rolling window functions to the time series. Use this widget to get a series’ mean.
+
Terapkan fungsi rolling window ke time series. Gunakan widget Moving Transform untuk mendapatkan rata-rata nilai dari series.
  
 
==Input==
 
==Input==
Line 13: Line 13:
 
  Time series: The input time series with the added series’ transformations.
 
  Time series: The input time series with the added series’ transformations.
  
In this widget, you define what aggregation functions to run over the time series and with what window sizes.
+
Dalam widget Moving Transform, kita dapat menentukan fungsi agregasi apa yang harus dijalankan dalam time series dan dengan ukuran windows berapa.
  
 
[[File:Moving-transform-stamped.png|center|200px|thumb]]
 
[[File:Moving-transform-stamped.png|center|200px|thumb]]
Line 21: Line 21:
 
* Time series you want to run the transformation over.
 
* Time series you want to run the transformation over.
 
* Desired window size.
 
* Desired window size.
* Aggregation function to aggregate the values in the window with. Options are: mean, sum, max, min, median, mode, standard deviation, variance, product, linearly-weighted moving average, exponential moving average, harmonic mean, geometric mean, non-zero count, cumulative sum, and cumulative product.
+
* Aggregation function untuk meng-agregate nilai di windows. Opsi yang ada adalah: mean (rata-rata), sum (jumlah), max, min, median, mode, standard deviation, variance, product, linearly-weighted moving average, exponential moving average, harmonic mean, geometric mean, non-zero count, cumulative sum, dan cumulative product.
 
* Select Non-overlapping windows options if you don’t want the moving windows to overlap but instead be placed side-to-side with zero intersection.
 
* Select Non-overlapping windows options if you don’t want the moving windows to overlap but instead be placed side-to-side with zero intersection.
 
* In the case of non-overlapping windows, define the fixed window width(overrides and widths set in (4).
 
* In the case of non-overlapping windows, define the fixed window width(overrides and widths set in (4).
Line 27: Line 27:
 
==Example==
 
==Example==
  
To get a 5-day moving average, we can use a rolling window with mean aggregation.
+
Pada widget Moving Transform untuk memperoleh 5-day moving average, kita dapat menggunakan rolling window dengan mean aggregation.
  
 
[[File:Moving-transform-ex1.png|center|200px|thumb]]
 
[[File:Moving-transform-ex1.png|center|200px|thumb]]
  
To integrate time series’ differences from Difference widget, use Cumulative sum aggregation over a window wide enough to grasp the whole series.
+
Pada widget Moving Transform, untuk mengintegralkan time series’ difference dari widget Difference, gunakan Cumulative sum aggregation pada window yang cukup lebar untuk menangkap keseluruhan series.
  
 
[[File:Moving-transform-ex2.png|center|200px|thumb]]
 
[[File:Moving-transform-ex2.png|center|200px|thumb]]
 
  
 
==Referensi==
 
==Referensi==

Latest revision as of 07:53, 17 March 2020

Sumber: https://orange.biolab.si/widget-catalog/time-series/moving_transform/


Terapkan fungsi rolling window ke time series. Gunakan widget Moving Transform untuk mendapatkan rata-rata nilai dari series.

Input

Time series: Time series as output by As Timeseries widget.

Output

Time series: The input time series with the added series’ transformations.

Dalam widget Moving Transform, kita dapat menentukan fungsi agregasi apa yang harus dijalankan dalam time series dan dengan ukuran windows berapa.

Moving-transform-stamped.png
  • Define a new transformation.
  • Remove the selected transformation.
  • Time series you want to run the transformation over.
  • Desired window size.
  • Aggregation function untuk meng-agregate nilai di windows. Opsi yang ada adalah: mean (rata-rata), sum (jumlah), max, min, median, mode, standard deviation, variance, product, linearly-weighted moving average, exponential moving average, harmonic mean, geometric mean, non-zero count, cumulative sum, dan cumulative product.
  • Select Non-overlapping windows options if you don’t want the moving windows to overlap but instead be placed side-to-side with zero intersection.
  • In the case of non-overlapping windows, define the fixed window width(overrides and widths set in (4).

Example

Pada widget Moving Transform untuk memperoleh 5-day moving average, kita dapat menggunakan rolling window dengan mean aggregation.

Moving-transform-ex1.png

Pada widget Moving Transform, untuk mengintegralkan time series’ difference dari widget Difference, gunakan Cumulative sum aggregation pada window yang cukup lebar untuk menangkap keseluruhan series.

Moving-transform-ex2.png

Referensi

Pranala Menarik