Difference between revisions of "Orange: Outliers"
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Sumber: https://docs.biolab.si//3/visual-programming/widgets/data/outliers.html | Sumber: https://docs.biolab.si//3/visual-programming/widgets/data/outliers.html | ||
+ | Widget [[Outliers]] mendeteksi outlier sederhana dengan membandingkan jarak antar instance. | ||
− | + | ==Input== | |
− | + | Data: input dataset | |
+ | Distances: distance matrix | ||
− | + | ==Output== | |
− | + | Outliers: instances scored as outliers | |
+ | Inliers: instances not scored as outliers | ||
− | + | Widget [[Outliers]] menerapkan salah satu dari dua metode untuk mendeteksi outlier. Kedua metode menerapkan klasifikasi ke dataset, satu dengan SVM (multiple kernel) dan yang lainnya dengan elliptical envelope. SVM satu kelas dengan non-linear kernel (RBF) berkinerja baik untuk distribusi non-Gaussian, sedangkan estimator Covariance hanya berfungsi untuk data dengan distribusi Gaussian. | |
− | + | [[File:Outliers-stamped.png|center|400px|thumb]] | |
− | |||
− | + | * Information on the input data, number of inliers and outliers based on the selected model. | |
− | + | * Select the Outlier detection method: | |
− | + | ** One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class: | |
− | + | *** Nu is a parameter for the upper bound on the fraction of training errors and a lower bound of the fraction of support vectors | |
− | + | *** Kernel coefficient is a gamma parameter, which specifies how much influence a single data instance has | |
− | + | ** Covariance estimator: fits ellipsis to central points with Mahalanobis distance metric | |
− | + | *** Contamination is the proportion of outliers in the dataset | |
− | + | *** Support fraction specifies the proportion of points included in the estimate | |
− | + | * Produce a report. | |
− | + | * Click Detect outliers to output the data. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Contoh== | ==Contoh== | ||
− | + | Di bawah, adalah contoh sederhana cara menggunakan widget Outliers. Kita menggunakan dataset Iris untuk mendeteksi outlier. Kita memilih satu kelas SVM dengan metode non-linear kernel(RBF), dengan Nu ditetapkan pada 20% (lebih sedikit kesalahan pelatihan, lebih banyak vektor dukungan). Kemudian kita mengamati [[Outliers]] di widget Data Table, sementara kita mengirim inliers ke widget Scatter Plot. | |
− | [[File:Outliers-Example.png|center| | + | [[File:Outliers-Example.png|center|600px|thumb]] |
Latest revision as of 14:00, 18 April 2020
Sumber: https://docs.biolab.si//3/visual-programming/widgets/data/outliers.html
Widget Outliers mendeteksi outlier sederhana dengan membandingkan jarak antar instance.
Input
Data: input dataset Distances: distance matrix
Output
Outliers: instances scored as outliers Inliers: instances not scored as outliers
Widget Outliers menerapkan salah satu dari dua metode untuk mendeteksi outlier. Kedua metode menerapkan klasifikasi ke dataset, satu dengan SVM (multiple kernel) dan yang lainnya dengan elliptical envelope. SVM satu kelas dengan non-linear kernel (RBF) berkinerja baik untuk distribusi non-Gaussian, sedangkan estimator Covariance hanya berfungsi untuk data dengan distribusi Gaussian.
- Information on the input data, number of inliers and outliers based on the selected model.
- Select the Outlier detection method:
- One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class:
- Nu is a parameter for the upper bound on the fraction of training errors and a lower bound of the fraction of support vectors
- Kernel coefficient is a gamma parameter, which specifies how much influence a single data instance has
- Covariance estimator: fits ellipsis to central points with Mahalanobis distance metric
- Contamination is the proportion of outliers in the dataset
- Support fraction specifies the proportion of points included in the estimate
- One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class:
- Produce a report.
- Click Detect outliers to output the data.
Contoh
Di bawah, adalah contoh sederhana cara menggunakan widget Outliers. Kita menggunakan dataset Iris untuk mendeteksi outlier. Kita memilih satu kelas SVM dengan metode non-linear kernel(RBF), dengan Nu ditetapkan pada 20% (lebih sedikit kesalahan pelatihan, lebih banyak vektor dukungan). Kemudian kita mengamati Outliers di widget Data Table, sementara kita mengirim inliers ke widget Scatter Plot.