Difference between revisions of "Orange: Calibrated Learner"
Onnowpurbo (talk | contribs) (Created page with "Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/calibratedlearner.html Wraps another learner with probability calibration and decision threshold optimizati...") |
Onnowpurbo (talk | contribs) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/calibratedlearner.html | Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/calibratedlearner.html | ||
− | + | Membungkus / melanjutkan kerja dari learner lain dengan probability calibration dan decision threshold optimization. | |
− | + | ==Input== | |
− | + | Data: input dataset | |
+ | Preprocessor: preprocessing method(s) | ||
+ | Base Learner: learner to calibrate | ||
− | + | ==Output== | |
− | + | Learner: calibrated learning algorithm | |
+ | Model: trained model using the calibrated learner | ||
− | + | Widget Calibrated Learner menghasilkan sebuah model yang mengkalibrasi distribusi dari class probabilities dan meng-optimasi decision threshold. Widget ini hanya bekerja untuk binary classification task saja. | |
− | + | [[File:Calibrated-Learner-stamped.png|center|200px|thumb]] | |
− | |||
− | + | * The name under which it will appear in other widgets. Default name is composed of the learner, calibration and optimization parameters. | |
+ | * Probability calibration: | ||
+ | ** Sigmoid calibration | ||
+ | ** Isotonic calibration | ||
+ | ** No calibration | ||
− | + | * Decision threshold optimization: | |
+ | ** Optimize classification accuracy | ||
+ | ** Optimize F1 score | ||
+ | ** No threshold optimization | ||
− | + | * Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically. | |
− | + | ==Contoh== | |
− | + | Contoh sederhana dengan Calibrated Learner. Kita menggunakan dataset titanic karena widget ini membutuhkan nilai binary class (dalam hal ini mereka adalah 'survived’ atau ‘not survived’). | |
− | + | Kita menggunakan Logistic Regression sebagai base learner yang akan dikalibrasi dengan nilai setting default, yaitu dengan sigmoid optimization dari distribusi nilai dan di optimasi dengan CA. | |
− | + | Membandingkan hasil dari uncalibrated Logistic Regression model kita akan melihat dengan jelas bahwa calibrated model lebih baik. | |
− | + | [[File:Calibrated-Learner-Example.png|center|600px|thumb]] | |
− | + | ==Youtube== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | * [https://www.youtube.com/watch?v=fYLD2AHjjZI YOUTUBE: ORANGE model Callibrated Learner] | ||
==Referensi== | ==Referensi== |
Latest revision as of 05:55, 11 April 2020
Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/calibratedlearner.html
Membungkus / melanjutkan kerja dari learner lain dengan probability calibration dan decision threshold optimization.
Input
Data: input dataset Preprocessor: preprocessing method(s) Base Learner: learner to calibrate
Output
Learner: calibrated learning algorithm Model: trained model using the calibrated learner
Widget Calibrated Learner menghasilkan sebuah model yang mengkalibrasi distribusi dari class probabilities dan meng-optimasi decision threshold. Widget ini hanya bekerja untuk binary classification task saja.
- The name under which it will appear in other widgets. Default name is composed of the learner, calibration and optimization parameters.
- Probability calibration:
- Sigmoid calibration
- Isotonic calibration
- No calibration
- Decision threshold optimization:
- Optimize classification accuracy
- Optimize F1 score
- No threshold optimization
- Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.
Contoh
Contoh sederhana dengan Calibrated Learner. Kita menggunakan dataset titanic karena widget ini membutuhkan nilai binary class (dalam hal ini mereka adalah 'survived’ atau ‘not survived’).
Kita menggunakan Logistic Regression sebagai base learner yang akan dikalibrasi dengan nilai setting default, yaitu dengan sigmoid optimization dari distribusi nilai dan di optimasi dengan CA.
Membandingkan hasil dari uncalibrated Logistic Regression model kita akan melihat dengan jelas bahwa calibrated model lebih baik.