Difference between revisions of "R: Matematika Dasar"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
(17 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
2 ^ 2 | 2 ^ 2 | ||
− | |||
2 * 2 | 2 * 2 | ||
− | |||
2 / 2 | 2 / 2 | ||
− | |||
2 + 2 | 2 + 2 | ||
− | |||
2 - 2 | 2 - 2 | ||
− | |||
4 * 3 ^ 3 | 4 * 3 ^ 3 | ||
Line 17: | Line 12: | ||
-4:3 | -4:3 | ||
− | =abs remainder== | + | ==abs remainder== |
absolute | absolute | ||
Line 26: | Line 21: | ||
(-4:3) %% 2 | (-4:3) %% 2 | ||
− | |||
(-4:3) %/% 3 | (-4:3) %/% 3 | ||
Line 33: | Line 27: | ||
sign(-4:3) | sign(-4:3) | ||
− | ==round | + | ==round== |
round(7/18,2) | round(7/18,2) | ||
− | |||
7/118 | 7/118 | ||
Line 43: | Line 36: | ||
7/118 | 7/118 | ||
+ | floor(0.39) | ||
+ | ceiling(0.39) | ||
+ | |||
+ | |||
+ | ==Trigonometry== | ||
+ | |||
+ | sin(pi/2) | ||
+ | tan(pi/4) | ||
+ | cos(pi) | ||
+ | |||
+ | |||
+ | ==summary functions== | ||
+ | |||
+ | sum(1:3) | ||
+ | prod(c(3,5,7)) | ||
+ | min(c(1,6,-14,-154,0)) | ||
+ | max(c(1,6,-14,-154,0)) | ||
+ | range(c(1,6,-14,-154,0)) | ||
+ | |||
+ | any(c(1,6,-14,-154,0)<0) | ||
+ | which(c(1,6,-14,-154,0)<0) | ||
+ | all(c(1,6,-14,-154,0)<0) # all checks if criteria is met by each element | ||
+ | |||
+ | |||
+ | ==Complex== | ||
+ | |||
+ | # Plot of Characteristic Function of a U(-1,1) Random Variable | ||
+ | a <- -1; b <- 1 | ||
+ | t <- seq(-20,20,.1) | ||
+ | chu <- (exp(1i*t*b)-exp(1i*t*a))/(1i*t*(b-a)) | ||
+ | plot(t,chu,"l",ylab=(expression(varphi(t))),main="Characteristic Function of Uniform Distribution [-1, 1]") | ||
+ | |||
+ | |||
+ | # Plot of Characteristic Function of a N(0,1) Variable | ||
+ | mu <- 0; sigma <- 1 | ||
+ | t <- seq(-5,5,0.1) | ||
+ | chsnv <- exp(1i*t*mu-.5*(sigma^2)*(t^2)) | ||
+ | plot(t,chsnv,"l",ylab=(expression(varphi(t))),main="Characteristic Function of Standard Normal Distribution") | ||
+ | |||
+ | |||
+ | # Plot of Characteristic Function of Poisson Random Variable | ||
+ | lambda <- 6 | ||
+ | t <- seq(0,20,.1) | ||
+ | chpois <- exp(lambda*(exp(1i*t)-1)) | ||
+ | plot(t,chpois,"l") # Warning omitted and left as exercise | ||
+ | # for the reader to interpret | ||
+ | |||
+ | |||
+ | ==Spesial== | ||
+ | |||
+ | factorial(3) | ||
+ | factorial(3000) # any guess? | ||
+ | lfactorial(3000) #lfactorial helps out | ||
+ | sum(log(3000:2)) | ||
+ | |||
+ | |||
+ | stirling <- function(n) {sqrt(2*pi)*n^{n+.5}*exp(-n)} | ||
+ | stirling(100) | ||
+ | factorial(100)/stirling(100) | ||
+ | |||
+ | |||
+ | choose(10,4) | ||
+ | choose(10,10) # just verifying | ||
+ | choose(100,10) # how about large n? | ||
+ | |||
+ | |||
+ | prod(10:(10-4+1)) # permutations of 10 p 4 | ||
+ | prod(100:(100-10+1)) #permutations of 100 p 10 | ||
+ | |||
+ | |||
+ | ==is, as, is.na, etc== | ||
+ | |||
+ | is(5); is.numeric(5) | ||
+ | my_undefined_function <- function(n){} | ||
+ | is.function(my_undefined_function) | ||
+ | is.logical(T) # T or F can be used as abb of TRUE or FALSE | ||
+ | is(pi) | ||
==Pranala Menarik== | ==Pranala Menarik== | ||
* [[R]] | * [[R]] |
Latest revision as of 12:21, 28 November 2019
Contoh operasi matematika
2 ^ 2 2 * 2 2 / 2 2 + 2 2 - 2 4 * 3 ^ 3
vector -4 s/d 3
-4:3
abs remainder
absolute
abs(-4:3)
remainder
(-4:3) %% 2 (-4:3) %/% 3
sign
sign(-4:3)
round
round(7/18,2)
7/118
options(digits=2) 7/118
floor(0.39) ceiling(0.39)
Trigonometry
sin(pi/2) tan(pi/4) cos(pi)
summary functions
sum(1:3) prod(c(3,5,7)) min(c(1,6,-14,-154,0)) max(c(1,6,-14,-154,0)) range(c(1,6,-14,-154,0))
any(c(1,6,-14,-154,0)<0) which(c(1,6,-14,-154,0)<0) all(c(1,6,-14,-154,0)<0) # all checks if criteria is met by each element
Complex
# Plot of Characteristic Function of a U(-1,1) Random Variable a <- -1; b <- 1 t <- seq(-20,20,.1) chu <- (exp(1i*t*b)-exp(1i*t*a))/(1i*t*(b-a)) plot(t,chu,"l",ylab=(expression(varphi(t))),main="Characteristic Function of Uniform Distribution [-1, 1]")
# Plot of Characteristic Function of a N(0,1) Variable mu <- 0; sigma <- 1 t <- seq(-5,5,0.1) chsnv <- exp(1i*t*mu-.5*(sigma^2)*(t^2)) plot(t,chsnv,"l",ylab=(expression(varphi(t))),main="Characteristic Function of Standard Normal Distribution")
# Plot of Characteristic Function of Poisson Random Variable lambda <- 6 t <- seq(0,20,.1) chpois <- exp(lambda*(exp(1i*t)-1)) plot(t,chpois,"l") # Warning omitted and left as exercise # for the reader to interpret
Spesial
factorial(3) factorial(3000) # any guess? lfactorial(3000) #lfactorial helps out sum(log(3000:2))
stirling <- function(n) {sqrt(2*pi)*n^{n+.5}*exp(-n)} stirling(100) factorial(100)/stirling(100)
choose(10,4) choose(10,10) # just verifying choose(100,10) # how about large n?
prod(10:(10-4+1)) # permutations of 10 p 4 prod(100:(100-10+1)) #permutations of 100 p 10
is, as, is.na, etc
is(5); is.numeric(5) my_undefined_function <- function(n){} is.function(my_undefined_function) is.logical(T) # T or F can be used as abb of TRUE or FALSE is(pi)