Difference between revisions of "Panda: read csv datetime"

From OnnoWiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
==Cara 1==
 
==Cara 1==
  
import pandas as pd
+
  headers = ['col1', 'col2', 'col3', 'col4']
from datetime import datetime
+
  dtypes = {'col1': 'str', 'col2': 'str', 'col3': 'str', 'col4': 'float'}
  headers = ['col1', 'col2', 'col3', 'col4']  
+
parse_dates = ['col1', 'col2']
  dtypes = [datetime, datetime, str, float]  
+
  pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes, parse_dates=parse_dates)
  pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes)
 
  
import pandas as pd
+
 
from datetime import datetime
+
  headers = ['Time', 'Value']
  headers = ['Time', 'Value']  
+
  dtypes = {'Time': 'str', 'Value': 'float'}
  dtypes = [datetime, float]  
+
parse_dates = ['Time']
  pd.read_csv(file, sep=',', header=None, names=headers, dtype=dtypes)
+
  pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes, parse_dates=parse_dates)
  
  

Latest revision as of 10:10, 8 August 2019

Cara 1

headers = ['col1', 'col2', 'col3', 'col4']
dtypes = {'col1': 'str', 'col2': 'str', 'col3': 'str', 'col4': 'float'}
parse_dates = ['col1', 'col2']
pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes, parse_dates=parse_dates)


headers = ['Time', 'Value']
dtypes = {'Time': 'str', 'Value': 'float'}
parse_dates = ['Time']
pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes, parse_dates=parse_dates)


Cara 1

import pandas
x = pandas.read_csv('/home/onno/TensorFlow/TEMP-train.csv', parse_dates=True, index_col='DateTime', 
                                names=['DateTime', 'X'], header=None, sep=',')
print(x)
x.info()
print(x.head())


Cara 2

df = pd.read_csv(file, sep = ',', parse_dates= [col],encoding='utf-8-sig', usecols= ['Date', 'ids'],)


Cara 3

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

infile = '/home/onno/TensorFlow/TEMP-train.csv'
mydateparser = lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")
df = pd.read_csv(infile, sep=',', names=['datetime', 'value'], parse_dates=['datetime'], date_parser=mydateparser)