Difference between revisions of "Text Mining: Sentiment Classifier"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
* NumPy http://numpy.scipy.org | * NumPy http://numpy.scipy.org | ||
* SentiWordNet http://sentiwordnet.isti.cnr.it | * SentiWordNet http://sentiwordnet.isti.cnr.it | ||
+ | |||
+ | Jika belum di instalasi, tampaknya sentiment classifer akan men-download & meng-compile semua yang dibutuhkan. | ||
==Cara Install== | ==Cara Install== | ||
Line 18: | Line 20: | ||
sudo python setup.py install | sudo python setup.py install | ||
+ | |||
+ | akan terinstalasi di | ||
+ | |||
+ | /usr/local/bin | ||
+ | |||
+ | |||
+ | ==Download== | ||
+ | |||
+ | https://github.com/downloads/kevincobain2000/sentiment_classifier/sentiment_classifier-0.5.tar.gz | ||
==Dokumen== | ==Dokumen== |
Latest revision as of 07:57, 8 February 2017
Sentiment Classifier menggunakan Word Sense Disambiguation menggunakan WordNet dan statistik terjadinya kata dari corpus movie review NLTK. Mengklasifikasikan ke dalam kategori positif dan negatif.
Persyaratan
- Python 2.6.
- NLTK http://www.nltk.org 2.0
- NumPy http://numpy.scipy.org
- SentiWordNet http://sentiwordnet.isti.cnr.it
Jika belum di instalasi, tampaknya sentiment classifer akan men-download & meng-compile semua yang dibutuhkan.
Cara Install
Akan butuh akses ke folder
/usr/local/lib/python2.7/dist-packages/
Perintah shell
sudo python setup.py install
akan terinstalasi di
/usr/local/bin
Download
https://github.com/downloads/kevincobain2000/sentiment_classifier/sentiment_classifier-0.5.tar.gz
Dokumen
http://readthedocs.org/docs/sentiment_classifier/en/latest/ Try Online
Penggunaan
Perintah shell
senti_classifier -c file/with/review.txt
Penggunaan Python
Perintah shell
cd sentiment_classifier/src/senti_classifier/ python senti_classifier.py -c reviews.txt
Penggunaan Library
from senti_classifier import senti_classifier sentences = ['The movie was the worst movie', 'It was the worst acting by the actors'] pos_score, neg_score = senti_classifier.polarity_scores(sentences) print pos_score, neg_score