Difference between revisions of "Data Center: How to design and build a data center"

From OnnoWiki
Jump to navigation Jump to search
Line 71: Line 71:
 
Rak juga memainkan peran penting dalam skema pendinginan data center. Rak roda gigi umumnya diatur untuk membuat lorong panas dan dingin yang dapat meningkatkan efisiensi pendinginan dengan memungkinkan masuknya udara dingin ke lorong dingin, yang dipanaskan oleh roda gigi dan dikirim ke lorong panas, di mana udara panas dapat dihilangkan secara efektif dari ruangan. Pengaturan lorong juga dapat membantu memfasilitasi pengenalan pintu tambahan dan langkah-langkah keamanan di ujung setiap lorong untuk membatasi akses manusia.
 
Rak juga memainkan peran penting dalam skema pendinginan data center. Rak roda gigi umumnya diatur untuk membuat lorong panas dan dingin yang dapat meningkatkan efisiensi pendinginan dengan memungkinkan masuknya udara dingin ke lorong dingin, yang dipanaskan oleh roda gigi dan dikirim ke lorong panas, di mana udara panas dapat dihilangkan secara efektif dari ruangan. Pengaturan lorong juga dapat membantu memfasilitasi pengenalan pintu tambahan dan langkah-langkah keamanan di ujung setiap lorong untuk membatasi akses manusia.
  
==Data center security==
+
==Keamanan data center==
Data center security typically involves the three distinct aspects of access security, facility security and cybersecurity.
+
Keamanan data center biasanya melibatkan tiga aspek berbeda yaitu keamanan akses, keamanan fasilitas, dan keamanan siber.
  
Access security. Any discussion of data center facilities must involve a consideration of physical security. Physical security is the management of human personnel and the protection of the physical facility as well as its IT infrastructure. When implemented properly, security ensures that only authorized personnel have access to the facility and gear, and that all human activities are documented. Security can involve the following array of measures:
+
Akses keamanan. Setiap pembahasan fasilitas data center harus melibatkan pertimbangan keamanan fisik. Keamanan fisik adalah pengelolaan personel manusia dan perlindungan fasilitas fisik serta infrastruktur TI-nya. Ketika diterapkan dengan benar, keamanan memastikan bahwa hanya personel yang berwenang yang memiliki akses ke fasilitas dan perlengkapan, dan bahwa semua aktivitas manusia didokumentasikan. Keamanan dapat melibatkan serangkaian tindakan berikut:
  
* badge access into and around the facility (including the equipment areas);
+
* akses badge ke dalam dan di sekitar fasilitas (termasuk area peralatan);
* key access to specific racks and servers;
+
* akses kunci ke rak dan server tertentu;
* logs for employee and visitor/vendor access;
+
* log untuk akses karyawan dan pengunjung/vendor;
* escorts for non-employees;
+
* pendamping untuk non-karyawan;
* video surveillance; and
+
* CCTV; Dan
* on-site security personnel.
+
* petugas keamanan di tempat.
  
Facility security. Physical security also extends to the integrity of the data center environment, including temperature, humidity and smoke/fire/flood conditions. This aspect of data center protection is often handled by a BMS that monitors and reports environmental or emergency conditions to building managers.
+
Keamanan fasilitas. Keamanan fisik juga mencakup integritas lingkungan data center, termasuk suhu, kelembapan, dan kondisi asap/kebakaran/banjir. Aspek perlindungan data center ini sering ditangani oleh BMS yang memantau dan melaporkan kondisi lingkungan atau darurat kepada pengelola gedung.
  
Cybersecurity. Cybersecurity focuses on controlling access to enterprise data and applications hosted within the data center's IT infrastructure. Cybersecurity is intended to ensure that only properly authenticated users can access data or use applications, and that any breaches are reported and addressed immediately. For example, physical security prevents a human from touching a disk in the data center, while cybersecurity prevents that same human from accessing data on the disk from hundreds of miles away across a network. Cybersecurity uses a mix of antimalware, configuration management, intrusion detection/prevention, activity logging and other tools in order to oversee network activity and identify potential threats.
+
Keamanan cyber. Cybersecurity berfokus pada pengendalian akses ke data perusahaan dan aplikasi yang dihosting dalam infrastruktur TI data center. Cybersecurity dimaksudkan untuk memastikan bahwa hanya pengguna yang diautentikasi dengan benar yang dapat mengakses data atau menggunakan aplikasi, dan setiap pelanggaran dilaporkan dan segera ditangani. Misalnya, keamanan fisik mencegah manusia menyentuh disk di pusat data, sementara keamanan siber mencegah manusia yang sama mengakses data di disk dari jarak ratusan mil di seluruh jaringan. Cybersecurity menggunakan campuran antimalware, manajemen konfigurasi, deteksi/pencegahan intrusi, pencatatan aktivitas, dan alat lain untuk mengawasi aktivitas jaringan dan mengidentifikasi potensi ancaman.
  
 
==Data center power and performance demands==
 
==Data center power and performance demands==

Revision as of 19:42, 27 April 2023

Sumber: https://www.techtarget.com/searchdatacenter/How-to-design-and-build-a-data-center

Merancang data center yang efisien bukanlah hal yang mudah. Tinjau komponen fasilitas dan infrastruktur pusat data dan berbagai standar sebelum Anda mulai. Data center adalah pusat teknologi operasi perusahaan modern. Pusat data menyediakan infrastruktur TI penting yang diperlukan untuk memberikan sumber daya dan layanan kepada karyawan bisnis, mitra, dan pelanggan di seluruh dunia.

Bisnis kecil atau menengah seringkali dapat mengimplementasikan "data center" yang berguna dalam batas-batas lemari atau ruangan nyaman lainnya dengan sedikit modifikasi, jika ada. Namun, skala besar yang terlibat dalam komputasi perusahaan menuntut ruang khusus yang besar yang dirancang dengan hati-hati untuk mendukung kebutuhan ruang, daya, pendinginan, manajemen, keandalan, dan keamanan infrastruktur TI.

Akibatnya, fasilitas data center mewakili aset tunggal terbesar dan termahal yang akan dimiliki bisnis -- baik dalam hal investasi modal maupun biaya operasional berulang. Para pemimpin bisnis dan TI harus memperhatikan masalah yang terlibat dalam desain dan konstruksi data center untuk memastikan bahwa fasilitas yang dihasilkan memenuhi kebutuhan bisnis sepanjang siklus hidup fasilitas dan keadaan bisnis yang berubah.


Apa komponen utama data center?

Ada dua aspek utama untuk data center mana pun: fasilitas, dan infrastruktur TI yang berada di dalam fasilitas. Aspek-aspek ini hidup berdampingan dan bekerja sama, tetapi dapat didiskusikan secara terpisah.

Fasilitas. Fasilitas adalah bangunan fisik yang digunakan untuk data center. Dalam istilah paling sederhana, data center hanyalah ruang terbuka besar tempat infrastruktur akan digunakan. Meskipun hampir semua ruangan memiliki potensi untuk mengoperasikan sejumlah infrastruktur TI, fasilitas yang dirancang dengan baik mempertimbangkan berbagai faktor berikut:

  • Space. Harus ada ruang lantai yang cukup -- ukuran meter persegi -- untuk menampung semua infrastruktur TI yang ingin diterapkan bisnis saat ini dan di masa mendatang. Ruang harus terletak di situs yang dipertimbangkan dengan baik dengan pajak dan akses yang terjangkau. Ruang sering dibagi untuk mengakomodasi berbagai tujuan atau jenis penggunaan.
  • Power. Harus ada daya yang memadai -- dalam watt, seringkali sebanyak 100 megawatt -- untuk mengoperasikan semua infrastruktur TI. Listrik harus terjangkau, bersih -- artinya bebas dari fluktuasi atau gangguan -- dan dapat diandalkan. Daya terbarukan dan tambahan/tambahan harus disertakan.
  • Cooling. Sejumlah besar daya yang dikirimkan ke pusat data diubah menjadi komputasi -- yaitu, kerja -- dan banyak panas, yang harus dihilangkan dari infrastruktur TI menggunakan sistem HVAC konvensional, serta teknologi pendinginan nonkonvensional lainnya.
  • Security. Mempertimbangkan nilai pusat data dan kepentingan kritisnya bagi bisnis, pusat data harus menyertakan akses terkontrol menggunakan berbagai taktik, mulai dari akses badge karyawan hingga pengawasan video.
  • Management. Pusat data modern biasanya menggabungkan building management system (BMS) yang dirancang untuk membantu pemimpin TI dan bisnis mengawasi lingkungan pusat data secara real time, termasuk pengawasan suhu, kelembapan, tingkat daya dan pendinginan, serta pencatatan akses dan keamanan.

Infrastruktur. Infrastruktur mewakili rangkaian peralatan TI yang luas yang digunakan di dalam fasilitas. Ini adalah peralatan yang menjalankan aplikasi dan memberikan layanan kepada bisnis dan penggunanya. Infrastruktur TI tipikal mencakup komponen-komponen berikut:

  • Server. Komputer ini menghosting aplikasi perusahaan dan melakukan tugas komputasi.
  • Storage. Subsistem, seperti larik disk, digunakan untuk menyimpan dan melindungi aplikasi dan data bisnis.
  • Networking. Perlengkapan yang diperlukan untuk membuat jaringan bisnis meliputi sakelar, router, firewall, dan elemen keamanan siber lainnya.
  • Cable and rack. Berkilometer kabel menghubungkan perlengkapan TI, dan rak server fisik digunakan untuk mengatur server dan perlengkapan lainnya di dalam ruang fasilitas.
  • Backup power. Uninterruptible power supply (UPS), flywheel, dan sistem daya darurat lainnya sangat penting untuk memastikan perilaku infrastruktur yang teratur jika terjadi gangguan daya utama.
  • Management platform. Satu atau lebih data center infrastructure management (DCIM) diperlukan untuk mengawasi dan mengelola pelaporan infrastruktur TI tentang kesehatan sistem, ketersediaan, kapasitas, dan konfigurasi.

Ketika sebuah bisnis memutuskan untuk merancang dan membangun pusat data, fokus alaminya adalah pada desain dan konstruksi fasilitas tersebut. Namun para pemimpin TI juga harus mempertimbangkan infrastruktur yang akan masuk ke fasilitas untuk memvalidasi proyek.

Bagaimana merancang data center

Tidak ada standar yang diwajibkan untuk desain atau konstruksi data center; data center dimaksudkan agar sesuai dengan kebutuhan unik bisnis secara keseluruhan, bukan sebaliknya. Namun, tujuan utama dari standar apa pun adalah untuk membangun platform yang terbaik. Bermacam-macam standar data center saat ini ada, dan bisnis dapat menggabungkan satu atau lebih standar -- atau bagian dari standar -- ke dalam proyek data center. Standar membantu memastikan perhatian yang memadai diberikan pada faktor-faktor ini, antara lain:

  • desain konseptual;
  • tata letak dan perencanaan ruang;
  • persyaratan konstruksi bangunan;
  • masalah keamanan fisik;
  • bangunan internal (mekanik, listrik, pipa ledeng dan sistem kebakaran);
  • operasi dan workflow; Dan
  • maintenance.

Di bawah ini adalah beberapa standar desain dan infrastruktur pusat data utama:

  • Uptime Institute Tier Standard. Uptime Institute Tier Standard berfokus pada desain, konstruksi, dan commissioning data center, dan digunakan untuk menentukan ketahanan fasilitas terkait dengan empat tingkat redundansi/keandalan.
  • ANSI/TIA 942-B. Standar ini melibatkan perencanaan, desain, konstruksi dan komisioning perdagangan bangunan, serta proteksi kebakaran, TI, dan pemeliharaan. Ini juga menggunakan empat tingkat peringkat keandalan, yang diterapkan oleh para profesional bersertifikasi BICSI.
  • EN 50600 seri. Serangkaian standar ini berfokus pada kabel IT dan desain jaringan serta memiliki berbagai konsep redundansi dan keandalan infrastruktur yang secara longgar didasarkan pada Standar Tier Uptime Institute.
  • ASHRA. ASHRAE guideline -- yang tidak khusus untuk TI atau data center -- terkait dengan desain dan penerapan pemanas, ventilasi, penyejuk udara, pendingin, dan bidang terkait.
Whatis-uptime-data-center-tier-standards.png

Selain itu, ada banyak variasi peraturan dan standar operasional yang dapat diterapkan pada data center. Standar peraturan termasuk HIPAA, Sarbanes-Oxley Act, SAS 70 Tipe I atau II dan Gramm-Leach-Bliley Act. Standar operasional dapat mencakup ISO 9000 untuk kualitas, ISO 14000 untuk manajemen lingkungan, ISO 27001 untuk keamanan informasi, Standar Keamanan Data Industri Kartu Pembayaran untuk keamanan kartu pembayaran dan EN 50600-2-6 tentang manajemen dan informasi operasional.

Standar membantu memastikan desain, konstruksi, dan pengoperasian data center yang tepat. Selain itu, penerapan dan dokumentasi yang cermat atas penggunaan standar yang relevan dapat membantu bisnis memastikan kepatuhan yang memadai melalui ketahanan fasilitas, manajemen, dan persiapan kelanjutan bisnis yang tepat.

Ruang fisik dan organisasi data center

Pada intinya, fasilitas data center tidak lebih dari ruang terbuka yang besar -- sebuah gudang yang disiapkan dengan hati-hati yang dimaksudkan untuk menjadi tuan rumah dan mengoperasikan infrastruktur TI yang menuntut. Meskipun data center kelas perusahaan dapat menjadi pekerjaan yang besar dan kompleks, masalah utamanya adalah masalah ruang sederhana yang dinyatakan dalam meter persegi.

Mungkin masalah ruang yang paling signifikan dan membingungkan adalah ukuran data center yang tepat untuk bisnis. Data Center sangat mahal: terlalu kecil, dan data center mungkin tidak memenuhi kebutuhan bisnis saat ini atau di masa depan; terlalu besar, dan modal yang sangat besar dapat disia-siakan untuk menyediakan ruang yang tidak terpakai. Sangat penting untuk membangun fasilitas yang menawarkan kapasitas pertumbuhan namun pemanfaatan yang optimal. Ukuran data center terkadang dianggap sebagai seni tersendiri. Banyak faktor lain yang perlu dipertimbangkan dalam data center termasuk yang berikut:

  • Lighting. Sebagian besar pencahayaan data data redup atau mati tanpa kehadiran manusia.
  • Suhu. Tuntutan pendinginan dapat menjaga suhu tetap rendah, sehingga manusia mungkin membutuhkan pakaian pelindung.
  • Noise. Kipas pendingin di lusinan -- bahkan ratusan -- server dapat menghasilkan hiruk-pikuk yang membutuhkan perlindungan pendengaran.
  • Berat. Peralatan berat, dan lantai harus dirancang untuk menahan beban yang ekstrim. Pertimbangan berat khusus mungkin diperlukan untuk lantai yang ditinggikan yang digunakan untuk menangani aliran udara pendingin.

Di luar ruang fisik, desain data center harus menyertakan pertimbangan cermat terhadap lokasi dan tata letak peralatan -- yaitu, di mana infrastruktur TI ditempatkan di dalam fasilitas. Fitur paling umum dari setiap tata letak data center adalah rak server -- atau, singkatnya, rak. Rak adalah rangka logam kosong dengan opsi penspasian dan pemasangan standar yang dimaksudkan untuk menampung perlengkapan TI yang dipasang di rak standar, seperti server, subsistem penyimpanan, perlengkapan jaringan, pemasangan kabel, sistem daya tambahan seperti perangkat UPS, dan opsi I/O seperti keyboard dan monitor untuk akses administratif.

Rak juga memainkan peran penting dalam skema pendinginan data center. Rak roda gigi umumnya diatur untuk membuat lorong panas dan dingin yang dapat meningkatkan efisiensi pendinginan dengan memungkinkan masuknya udara dingin ke lorong dingin, yang dipanaskan oleh roda gigi dan dikirim ke lorong panas, di mana udara panas dapat dihilangkan secara efektif dari ruangan. Pengaturan lorong juga dapat membantu memfasilitasi pengenalan pintu tambahan dan langkah-langkah keamanan di ujung setiap lorong untuk membatasi akses manusia.

Keamanan data center

Keamanan data center biasanya melibatkan tiga aspek berbeda yaitu keamanan akses, keamanan fasilitas, dan keamanan siber.

Akses keamanan. Setiap pembahasan fasilitas data center harus melibatkan pertimbangan keamanan fisik. Keamanan fisik adalah pengelolaan personel manusia dan perlindungan fasilitas fisik serta infrastruktur TI-nya. Ketika diterapkan dengan benar, keamanan memastikan bahwa hanya personel yang berwenang yang memiliki akses ke fasilitas dan perlengkapan, dan bahwa semua aktivitas manusia didokumentasikan. Keamanan dapat melibatkan serangkaian tindakan berikut:

  • akses badge ke dalam dan di sekitar fasilitas (termasuk area peralatan);
  • akses kunci ke rak dan server tertentu;
  • log untuk akses karyawan dan pengunjung/vendor;
  • pendamping untuk non-karyawan;
  • CCTV; Dan
  • petugas keamanan di tempat.

Keamanan fasilitas. Keamanan fisik juga mencakup integritas lingkungan data center, termasuk suhu, kelembapan, dan kondisi asap/kebakaran/banjir. Aspek perlindungan data center ini sering ditangani oleh BMS yang memantau dan melaporkan kondisi lingkungan atau darurat kepada pengelola gedung.

Keamanan cyber. Cybersecurity berfokus pada pengendalian akses ke data perusahaan dan aplikasi yang dihosting dalam infrastruktur TI data center. Cybersecurity dimaksudkan untuk memastikan bahwa hanya pengguna yang diautentikasi dengan benar yang dapat mengakses data atau menggunakan aplikasi, dan setiap pelanggaran dilaporkan dan segera ditangani. Misalnya, keamanan fisik mencegah manusia menyentuh disk di pusat data, sementara keamanan siber mencegah manusia yang sama mengakses data di disk dari jarak ratusan mil di seluruh jaringan. Cybersecurity menggunakan campuran antimalware, manajemen konfigurasi, deteksi/pencegahan intrusi, pencatatan aktivitas, dan alat lain untuk mengawasi aktivitas jaringan dan mengidentifikasi potensi ancaman.

Data center power and performance demands

Power is a perpetual challenge for any enterprise-class data center. A large facility can consume about 100 megawatts -- enough to power around 80,000 homes -- and power poses the single biggest Opex for an enterprise-class data center. Therefore, data center operators place the following demands on utility power:

  • Capacity. There must be adequate power to run the data center.
  • Cost. Power must be as inexpensive as possible.
  • Quality. Power must be electrically clean (i.e., free of undesirable electrical noise, surges and spikes).
  • Reliability. Power must be free of brownouts, blackouts or other disruptions.

These issues are increasingly addressed with locally generated and increasingly renewable options, including wind, solar and on-site generation.

But for a business to understand power issues for any data center site, it's important that data center designers and IT leaders calculate the power demands of the facility and its IT infrastructure. It's this benchmark that enables a business to understand approximate power costs and discuss capacity with regional utilities.

There is no single means of estimating power requirements. For the facility, power is a straightforward estimate of lighting and HVAC demands. IT infrastructure power demands can be more convoluted because server power requirements fluctuate with workload -- i.e., how much work the applications are doing -- and the configuration of each server, including the selection of CPU, installed memory and other expansion devices, such as GPUs.

Traditional power estimates include rack-based and nameplate-based approaches.

The rack-based approach generally assigns a standardized power-per-rack estimate. For example, an IT leader might assign an estimate of 7 kW to 10 kW per rack. If the data center plans to deploy 50 racks, the power estimate is a simple multiple. A similar approach is a general estimate of data center in watts per square foot (W/ft2). However, since this approach pays little attention to the equipment installed in each rack, it is often the most inaccurate means of power estimation.

The nameplate-based approach enables IT leaders to add up the power requirement listed on the nameplate of each server or other IT device. This is a more granular approach and can typically yield better estimates. Still, the power demand listed on each device nameplate can be notoriously inaccurate and doesn't consider the actual work the device is doing.

A more recent approach is to use actual power measurements per server, taken with IT power-handling devices, such as intelligent power distribution units (PDUs), located within each rack. Actual measurements can yield the most accurate estimates and give data center operators a better sense of how power demands and costs can fluctuate with workload demands.

Finally, utility power will inevitably experience occasional disruptions in generation and distribution, so data centers must include one or more options for redundant or backup power. There can be several layers of secondary power put in place, depending on which issues the business intends to guard against.

At the facility level, a data center can incorporate diesel or natural gas-powered backup generators capable of running the entire facility over the long term. Backup power can be supplemented by local renewable energy sources, such as solar or wind farms. At the IT infrastructure level, racks can incorporate UPS options, which provide short-term battery backups to enable an orderly system shutdown when power disruptions become unavoidable.

UPS under normal power diagram A full-time double conversion UPS design under normal utility power. UPS during power failure diagram A dual conversion UPS design when utility power fails.

Data center cooling systems

The power delivered to a data center is translated into work performed by the IT infrastructure, as well as an undesirable byproduct: heat. This heat must be removed from servers and systems, and then exhausted from the data center. Consequently, cooling systems are a critical concern for data center designers and operators.

There are two primary cooling issues. The first issue is the amount of cooling required, which ultimately defines the size or capacity of the data center's HVAC subsystems. However, designers must make the translation from the data center's power demand in watts (W) to cooling capacity gauged in tons (t) -- i.e., the amount of heat energy required to melt one ton of ice at 32 degrees Fahrenheit in one hour. The typical calculation first requires the conversion of watts into British thermal units (BTU) per hour, which can then be converted into tons:

W x 3.41 = BTU/hour
BTU/hour / 12,000 = t

The key is understanding the data center's power demands in watts and planned scalability, so it's important to right-size the building's cooling subsystem. If the cooling system is too small, the data center can't hold or scale the expected amount of IT infrastructure. If the cooling system is too large, it poses a costly and inefficient utility for the business.

The second cooling issue for data centers is efficient use and handling of cooled and heated air. For an ordinary human space, just introducing cooled air from one vent and then exhausting warmed air from another vent elsewhere in the room causes mixing and temperature averaging that yields adequate human comfort. But this common home and office approach doesn't work well in data centers, where racks of equipment create extreme heat in concentrated spaces. Racks of extremely hot gear demand careful application of cooled air, and then deliberate containment and removal of heated exhaust. Data center designers must take care to avoid the mixing of hot and cold air that keeps human air-conditioned spaces so comfortable.

Designers routinely address server room air handling through the use of containment schemes, such as hot aisle/cold aisle layouts. Consider two rows of equipment racks, where the rears face each other (see second diagram below). Cold air from the HVAC system is introduced into the aisles in front of each row of racks, while the heated air is collected and exhausted from the common hot aisle. Additional physical barriers are added to prevent the heated air from mixing with the cooled air. Such containment schemes offer a very efficient use of HVAC capacity.

Data center without hot/cold aisles diagram In data centers that don't use a hot/cold aisle design, the cooling units aren't always able to efficiently cool equipment. Data center with hot/cold aisles diagram In data centers designed around hot/cold aisles, the cooling units are able to more efficiently cool equipment. Other approaches to cooling include end of row and top of rack air-conditioning systems, which introduce cooled air into portions of a row of racks and exhaust heated air into hot aisles.

Some data centers even embrace emerging liquid cooling technologies that immerse IT gear in baths of chilled, electrically neutral liquids, such as mineral oils. The liquid chiller is small and power-efficient, and liquids can offer many times more heat transfer efficiency than air cooling. However, liquid cooling faces other challenges, including leaks/flooding, part corrosion or susceptibility to liquid intrusion, liquid filtering and cleanliness, and human safety.

Air cooling systems diagram This diagram shows the basic concepts of room-, row- and rack-based cooling architectures. The blue arrows indicate the relation of the primary cooling supply paths to the room.

Data center efficiency and sustainability

Today's concerns about the environmental impact of CO2 emissions from power generation have prompted many organizations to place new emphasis on the efficiency and sustainability of the data center.

Efficiency is fundamentally a measure of work done versus the amount of energy used to do that work. If all that input energy is successfully converted into useful work, the efficiency is 100%. If none of that input energy results in successful work, the efficiency is 0%. Businesses seek to improve efficiency toward 100% so that every dollar spent in energy is driving useful data center work.

Measures such as power usage effectiveness (PUE) are available to help organizations gauge efficiency. PUE is calculated as the power entering the data center divided by the power used in the IT infrastructure. This yields a simple ratio that approaches 1.0 as efficiency approaches 100%, and the corresponding percentage is expressed as data center infrastructure efficiency. Businesses can improve the PUE ratio by reducing the amount of energy in non-IT uses, such as reducing lighting and cooling in non-IT spaces and implementing other energy-efficient building designs.

PUE flowchart Power usage effectiveness is a metric used to assess the efficiency of a data center. Sustainability is another concern. Power generation creates pollution that is believed to drive climate change and reduce the health of the planet. Creating a sustainable or green data center means to strive for net zero carbon emissions for the power that drives data centers. Net zero means that energy is obtained from renewable sources that add zero CO2 to the atmosphere.


In some cases, the business can choose to approach net zero by using power from nonpolluting sources, such as solar or wind farms. In other cases, power can be purchased from power providers capable of capturing or recovering an equivalent amount of CO2 emitted in energy production, yielding net zero emissions. To achieve net zero, businesses must embrace energy conservation, energy efficiency -- such as PUE initiatives -- and renewable nonpolluting energy sources.

Green data storage chart Reduce data storage energy consumption to run a greener data center.

Data center design best practices

There is no single way to design a data center, and countless designs exist that cater to the unique needs of each business. But the following strategies can produce a data center design with superior efficiency and sustainability:

  • Measure power efficiency. Data center operators can't manage what they don't measure, so use metrics such as PUE to oversee the efficiency of the data center. PUE should be a continuous measurement taken at frequent intervals, year-round, as seasons and weather can affect power usage.
  • Revisit airflow. Cooling is essential to safe operation of IT infrastructure, but airflow must be managed and optimized. This can include limiting hot air/cold air mixing, using hot aisle/cold aisle containment schemes and even using blanking plates to cover unused rack openings, which prevents cooled air from flowing to places that don't cool any gear.
  • Raise the temperature. The colder a server room is, the more power-hungry and expensive it is. Rather than keeping the server room colder, evaluate the effect of actually raising the temperature. For example, rather than running a cold aisle at 68 to 72 degrees Fahrenheit, consider running the cold aisle at 78 to 80 degrees Fahrenheit. Most IT gear can tolerate elevated temperatures in this way.
  • Try alternative cooling. An HVAC system might be standard for data centers, but consider ways to reduce or eliminate dependence on conventional HVAC. For example, data centers in cooler climates might reduce HVAC use and introduce cooler outside air -- termed free cooling -- into the facility. Similarly, HVAC can be supplemented or replaced by water-cooled chillers -- i.e., economizers -- or other heat-exchange technologies that use far less energy.
  • Improve power distribution. Data center power efficiency is often lost due to inefficiency in power-handling and distribution devices, such as equipment transformers, PDUs and UPS gear. Use high-efficiency power distribution gear and minimize gear -- both of which result in fewer steps and opportunities for loss.

Data center design challenges

Although there is no single uniform formula for data center design and construction, there are numerous perpetual challenges faced by data center designers and operators. Below are several broad considerations and challenges:

  • Scalability. A data center is a long-term installation that can remain in service for decades, but the data center operating today may differ significantly from the data center operating one or two decades from now. Designers must consider ways of handling today's workloads and services, while also considering how those resources should scale well into the future. The challenge is in providing room for growth in space, power and cooling while mitigating the costs of such capacity until it's needed.
  • Flexibility. A data center is a bit like a heavy manufacturing floor: Equipment is put into place but can be almost impossible to move and change as demands evolve. An inability to move gear and shift aisles can prevent businesses from adapting and changing to meet new business demands. The challenge is meeting the needs for change without downtime or costly and time-consuming redesign.
  • Resilience. A business relies on its data center. If the data center doesn't work, the business doesn't work. Power disruptions, network disruptions, environmental catastrophes and even hacking and other acts of malice can take down a data center. Designers face the challenge of understanding the most prevalent threats and designing appropriate resilience to meet those threats.
  • Change. New computing technologies and new requirements are always being developed and introduced. Data center designers must consider how to adapt and incorporate often-unforeseeable changes without the need to fundamentally redesign the IT infrastructure to accommodate each change.

Data center infrastructure management software and tools

Data centers are complex organisms that require continuous monitoring and management at both the facility and IT infrastructure levels. Data center operators typically employ DCIM tools to provide perspective into the operation of both the facility and infrastructure. An array of common management tasks needed to operate a data center includes the following:

  • Observation and oversight. Observation tasks include monitoring power, temperature and humidity within the facility. Observation within the infrastructure can include available capacity, meaning which systems are utilized and which are free; application health to monitor the proper operation of key enterprise workloads; and overall uptime or availability. Observation tasks are commonly linked to alerting and ticketing systems for prioritizing and remediating problems as they are detected.
  • Preparation and remediation. Data center management also involves preparation tasks, such as disaster recovery and backup processes, as well as workload migration capabilities for enabling timely system service tasks. Remediation tasks include routine service, along with periodic system upgrades and ad hoc system troubleshooting and repair.
  • Capacity and capability. Data center management is also about planning for the future. Management tools can oversee current capacity -- i.e., used versus free resources -- and help data center operators track utilization in order to plan for more capacity. They also help support regular improvements to data center capability, such as system upgrades, technology refreshes and the introduction of new data center technologies.

Management is a pivotal element in business service assurance and service level agreements (SLAs). Many data centers are bound by some form of SLA -- either to internal departments or divisions or to external business partners and customers. Monitoring and management with DCIM and other tools are essential in guaranteeing adherence to an SLA or identifying SLA violations that can be promptly isolated and remediated. In addition, comprehensive monitoring and management help ensure business continuance and disaster recovery, which can be vital for today's regulatory compliance obligations.

Referensi