Difference between revisions of "Orange: Image Embedding"

From OnnoWiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Sumber: https://orange.biolab.si/widget-catalog/image-analytics/imageembedding/
 
Sumber: https://orange.biolab.si/widget-catalog/image-analytics/imageembedding/
  
Image embedding through deep neural networks.
+
Widget Image Embedding melakukan image embedding melalui deep neural network.
  
Inputs
+
==Input==
  
    Images: List of images.
+
Images: List of images.
  
Outputs
+
==Output==
  
    Embeddings: Images represented with a vector of numbers.
+
Embeddings: Images represented with a vector of numbers.
    Skipped Images: List of images where embeddings were not calculated.
+
Skipped Images: List of images where embeddings were not calculated.
  
Image Embedding reads images and uploads them to a remote server or evaluate them locally. Deep learning models are used to calculate a feature vector for each image. It returns an enhanced data table with additional columns (image descriptors).
+
Widget Image Embedding membaca image dan meng-upload-nya ke remote server atau meng-evaluasi image secara lokal. Deep learning model digunakan untuk mengkalkulasi feature vector untuk setiap  image. Widget Image Embedding akan mengeluarkan sebuah enhanced data table dengan tambahan kolom (image descriptor).
  
Images can be imported with Import Images widget or as paths to images in a spreadsheet. In this case the column with images paths needs a three-row header with type=image label in the third row.
+
Image dapat di import menggunakan widget Import Images atau sebagai path ke image di sebuah file spreadsheet. Dalam hal ini, kolom dengan path image perlu menggunakan three-row header dengan label type=image pada baris ke tiga.
  
[[File:Header-example.png|center|200px|thumb]]
+
[[File:Header-example.png|center|400px|thumb]]
  
Image Embedding offers several embedders, each trained for a specific task. Images are sent to a server or they are evaluated locally on the user’s computer, where vectors representations are computed. SqueezeNet embedder offers a fast evaluation on users computer which does not require an internet connection. If you decide to use other embedders than SqueezeNet, you will need an internet connection. Images sent to the server are not stored anywhere.
+
Widget Image Embedding menawarkan beberapa embedder, masing-masing telah di train untuk tugas / task yang spesifik. Image dapat dikirim ke server atau image di evaluasi secara lokal di komputer user, dimana vector representation di hitung. SqueezeNet embedder menawarkan evaluasi yang cepat pada komputer user yang tidak membutuhkan sambungan Internet. Jika kita memutuskan untuk menggunakan embedder lain selain SqueezeNet, kita memerlukan sambungan Internet. Image yang dikirim ke server tidak akan di simpan dimana-mana.
  
[[File:ImageEmbedding-stamped.png|center|200px|thumb]]
+
[[File:ImageEmbedding-stamped.png|center|600px|thumb]]
  
    Information on the number of embedded images and images skipped.
+
* Information on the number of embedded images and images skipped.
    Settings:
+
* Settings:
        Image attribute: attribute containing images you wish to embed
+
** Image attribute: attribute containing images you wish to embed
        Embedder:
+
** Embedder:
            SqueezeNet: Small and fast model for image recognition trained on ImageNet.
+
*** SqueezeNet: Small and fast model for image recognition trained on ImageNet.
            Inception v3: Google’s Inception v3 model trained on ImageNet.
+
*** Inception v3: Google’s Inception v3 model trained on ImageNet.
            VGG-16: 16-layer image recognition model trained on ImageNet.
+
*** VGG-16: 16-layer image recognition model trained on ImageNet.
            VGG-19: 19-layer image recognition model trained on ImageNet.
+
*** VGG-19: 19-layer image recognition model trained on ImageNet.
            Painters: A model trained to predict painters from artwork images.
+
*** Painters: A model trained to predict painters from artwork images.
            DeepLoc: A model trained to analyze yeast cell images.
+
*** DeepLoc: A model trained to analyze yeast cell images.
    Tick the box on the left to start the embedding automatically. Alternatively, click Apply. To cancel the embedding, click Cancel.
+
* Tick the box on the left to start the embedding automatically. Alternatively, click Apply. To cancel the embedding, click Cancel.
    Access help.
+
* Access help.
  
==Embedders==
+
==Embedder==
  
InceptionV3 is Google’s deep neural network for image recognition. It is trained on the ImageNet data set. The model we are using is available here. For the embedding, we use the activations of the penultimate layer of the model, which represents images with vectors.
+
InceptionV3 adalah Google deep neural network untuk  image recognition (pengenalan image). Google InceptionV3 di train pada ImageNet dataset. Model yang digunakan bisa di download dari http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz Untuk embedding, InceptionV3 menggunakan activation dari penultimate layer dari model, yang me-representasikan image dengan vector.
  
SqueezeNet is a deep model for image recognition that achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. The model is trained on the ImageNet dataset. We re-implemented the SqueezeNet by using weights from the author’s pretrained model. We use activations from pre-softmax (flatten10) layer as an embedding.
+
SqueezeNet adalah deep model untuk image recognition yang dapat mencapai keakuratan AlexNet-level pada ImageNet dengan 50x lebih sedikit parameter. Model ini di train pada ImageNet dataset. Kita mengimplementasikan ulang SqueezeNet dengan menggunakan weight yang digunakan pembuatnya pretrain model. Kita menggunakan activation dari pre-softmax (flatten10) layer sebagai embedding.
  
VGG16 and VGG19 are deep neural networks for image recognition proposed by Visual Geometry Group from the University of Oxford. They are trained on the ImageNet data set. We use a community implementation of networks with original weights. As an embedding, we use activations of the penultimate layer - fc7.
+
VGG16 dan VGG19 adalam deep neural network untuk image recognition yang diusulkan oleh Visual Geometry Group dari University of Oxford. Mereka di train pada ImageNet data set. Kita menggunakan netowrk yang di implementasi komunitas dengan weight asli-nya. Sebagai sebuah embedding, kita menggunakan activation dari penultimate layer - fc7.
  
Image Embedding also includes Painters, an embedder that was trained on 79,433 images of paintings by 1,584 painters and won Kaggle’s Painter by Numbers competition. Activations of the penultimate layer of the network are used as an embedding.
+
Widget Image Embedding juga memasukan Painters, sebuah embedder yang di train pada 79,433 image dari lukisan oleh 1,584 pelukis yang memenangkan kompetisi Kaggle Painter by Numbers. Activation dari penultimate layer dari network digunakan sebagai embedding.
  
DeepLoc is a convolutional network trained on 21,882 images of single cells that were manually assigned to one of 15 localization compartments. We use the pre-trained network proposed by authors. The embeddings are activations of penultimate layer fc_2.
+
DeepLoc adalah sebuah convolutional network yang di train pada 21,882 image pada single cell yang secara manual di assign pada salah satu dari 15 localization compartment. Kita menggunakan pre-trained network yang di usulkan oleh pembuatnya. Embeddings menggunakan activation dari penultimate layer fc_2.
  
An article by Godec et al. (2019) explains how the embeddings work and how to use it in Orange.
+
Sebuah artikel oleh Godec et al. (2019) menjelaskan bagaimana kerja embedding dan bagaimana menggunakannya di Orange.
  
 
==Example==
 
==Example==
  
Let us first import images from a folder with Import Images. We have three images of an orange, a banana and a strawberry in a folder called Fruits. From Import Images we will send a data table containing a column with image paths to Image Embedding.
+
Pertama kali yang kita lakukan adalah import image dari folder menggunakan widget Import Images. Sebagai contoh disini kita mempunyai tiga image dari orange, banana dan strawberry dalam sebuah folder Fruits. Dari widget Import Images kita kirim tabel data berisi kolom dengan path image ke widget Image Embedding.
  
We will use the default embedder SqueezeNet. The widget will automatically start retrieving image vectors from the server.
+
Kita menggunakan default embedder SqueezeNet. Widget Image Embedding akan secara automatis start dan akan menerima image vector dari server.
  
[[File:ImageEmbedding-Example1.png|center|200px|thumb]]
+
[[File:ImageEmbedding-Example1.png|center|600px|thumb]]
  
Once the computation is done, you can observe the enhanced data in a Data Table. With the retrieved embeddings, you can continue with any machine learning method Orange offers. Below is an example for clustering.
+
Setelah komputasi oleh widget Image Embedding selesai dilakukan, kita akan dapat melihat data tambahan di widget Data Table. Setelah embedding selesai di peroleh, kita dapat melanjutkan dengan berbagai metoda machine learning yang di tawarkan Orange. Berikut adalah sebuah contoh untuk clustering menggunakan widget Distances dan widget Hierachical Clustering.
 
 
[[File:ImageEmbedding-Example2.png|center|200px|thumb]]
 
  
 +
[[File:ImageEmbedding-Example2.png|center|600px|thumb]]
  
 
==Referensi==
 
==Referensi==

Latest revision as of 05:22, 8 April 2020

Sumber: https://orange.biolab.si/widget-catalog/image-analytics/imageembedding/

Widget Image Embedding melakukan image embedding melalui deep neural network.

Input

Images: List of images.

Output

Embeddings: Images represented with a vector of numbers.
Skipped Images: List of images where embeddings were not calculated.

Widget Image Embedding membaca image dan meng-upload-nya ke remote server atau meng-evaluasi image secara lokal. Deep learning model digunakan untuk mengkalkulasi feature vector untuk setiap image. Widget Image Embedding akan mengeluarkan sebuah enhanced data table dengan tambahan kolom (image descriptor).

Image dapat di import menggunakan widget Import Images atau sebagai path ke image di sebuah file spreadsheet. Dalam hal ini, kolom dengan path image perlu menggunakan three-row header dengan label type=image pada baris ke tiga.

Header-example.png

Widget Image Embedding menawarkan beberapa embedder, masing-masing telah di train untuk tugas / task yang spesifik. Image dapat dikirim ke server atau image di evaluasi secara lokal di komputer user, dimana vector representation di hitung. SqueezeNet embedder menawarkan evaluasi yang cepat pada komputer user yang tidak membutuhkan sambungan Internet. Jika kita memutuskan untuk menggunakan embedder lain selain SqueezeNet, kita memerlukan sambungan Internet. Image yang dikirim ke server tidak akan di simpan dimana-mana.

ImageEmbedding-stamped.png
  • Information on the number of embedded images and images skipped.
  • Settings:
    • Image attribute: attribute containing images you wish to embed
    • Embedder:
      • SqueezeNet: Small and fast model for image recognition trained on ImageNet.
      • Inception v3: Google’s Inception v3 model trained on ImageNet.
      • VGG-16: 16-layer image recognition model trained on ImageNet.
      • VGG-19: 19-layer image recognition model trained on ImageNet.
      • Painters: A model trained to predict painters from artwork images.
      • DeepLoc: A model trained to analyze yeast cell images.
  • Tick the box on the left to start the embedding automatically. Alternatively, click Apply. To cancel the embedding, click Cancel.
  • Access help.

Embedder

InceptionV3 adalah Google deep neural network untuk image recognition (pengenalan image). Google InceptionV3 di train pada ImageNet dataset. Model yang digunakan bisa di download dari http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz Untuk embedding, InceptionV3 menggunakan activation dari penultimate layer dari model, yang me-representasikan image dengan vector.

SqueezeNet adalah deep model untuk image recognition yang dapat mencapai keakuratan AlexNet-level pada ImageNet dengan 50x lebih sedikit parameter. Model ini di train pada ImageNet dataset. Kita mengimplementasikan ulang SqueezeNet dengan menggunakan weight yang digunakan pembuatnya pretrain model. Kita menggunakan activation dari pre-softmax (flatten10) layer sebagai embedding.

VGG16 dan VGG19 adalam deep neural network untuk image recognition yang diusulkan oleh Visual Geometry Group dari University of Oxford. Mereka di train pada ImageNet data set. Kita menggunakan netowrk yang di implementasi komunitas dengan weight asli-nya. Sebagai sebuah embedding, kita menggunakan activation dari penultimate layer - fc7.

Widget Image Embedding juga memasukan Painters, sebuah embedder yang di train pada 79,433 image dari lukisan oleh 1,584 pelukis yang memenangkan kompetisi Kaggle Painter by Numbers. Activation dari penultimate layer dari network digunakan sebagai embedding.

DeepLoc adalah sebuah convolutional network yang di train pada 21,882 image pada single cell yang secara manual di assign pada salah satu dari 15 localization compartment. Kita menggunakan pre-trained network yang di usulkan oleh pembuatnya. Embeddings menggunakan activation dari penultimate layer fc_2.

Sebuah artikel oleh Godec et al. (2019) menjelaskan bagaimana kerja embedding dan bagaimana menggunakannya di Orange.

Example

Pertama kali yang kita lakukan adalah import image dari folder menggunakan widget Import Images. Sebagai contoh disini kita mempunyai tiga image dari orange, banana dan strawberry dalam sebuah folder Fruits. Dari widget Import Images kita kirim tabel data berisi kolom dengan path image ke widget Image Embedding.

Kita menggunakan default embedder SqueezeNet. Widget Image Embedding akan secara automatis start dan akan menerima image vector dari server.

ImageEmbedding-Example1.png

Setelah komputasi oleh widget Image Embedding selesai dilakukan, kita akan dapat melihat data tambahan di widget Data Table. Setelah embedding selesai di peroleh, kita dapat melanjutkan dengan berbagai metoda machine learning yang di tawarkan Orange. Berikut adalah sebuah contoh untuk clustering menggunakan widget Distances dan widget Hierachical Clustering.

ImageEmbedding-Example2.png

Referensi

Pranala Menarik