Difference between revisions of "Orange: Save Model"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Onnowpurbo (talk | contribs)  (Created page with " center|400px|thumb") | Onnowpurbo (talk | contribs)   (→Contoh) | ||
| (6 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/savemodel.html | ||
| + | |||
| + | Menyimpan trained model ke sebuah output file. | ||
| + | |||
| + | ==Input== | ||
| + | |||
| + |  Model: trained model | ||
| + | |||
| + | [[File:SaveModel-stamped.png|center|200px|thumb]] | ||
| + | |||
| + | * Choose from previously saved models. | ||
| + | * Save the created model with the Browse icon. Click on the icon and enter the name of the file. The model will be saved to a pickled file. | ||
| + | |||
| + | [[File:SaveModel-save.png|center|200px|thumb]] | ||
| + | |||
| + | * Save the model. | ||
| + | |||
| + | ==Contoh== | ||
| + | |||
| + | Saat kita ingin menyimpan model yang di set khusus, masukkan data ke model (mis. Logistic Regression) dan connect ke widget Save Model. Beri nama model; load ke workflow dengan widget Load Model. Dataset yang digunakan dengan widget Load Model harus mengandung atribut yang kompatibel. | ||
| [[File:Orange-SaveModel-example.png|center|400px|thumb]] | [[File:Orange-SaveModel-example.png|center|400px|thumb]] | ||
| + | |||
| + | ==Referensi== | ||
| + | |||
| + | * https://docs.biolab.si//3/visual-programming/widgets/model/savemodel.html | ||
| + | |||
| + | ==Pranala Menarik== | ||
| + | |||
| + | * [[Orange]] | ||
Latest revision as of 11:28, 6 April 2020
Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/savemodel.html
Menyimpan trained model ke sebuah output file.
Input
Model: trained model
- Choose from previously saved models.
- Save the created model with the Browse icon. Click on the icon and enter the name of the file. The model will be saved to a pickled file.
- Save the model.
Contoh
Saat kita ingin menyimpan model yang di set khusus, masukkan data ke model (mis. Logistic Regression) dan connect ke widget Save Model. Beri nama model; load ke workflow dengan widget Load Model. Dataset yang digunakan dengan widget Load Model harus mengandung atribut yang kompatibel.


