Difference between revisions of "Orange: Linear Regression"

From OnnoWiki
Jump to navigation Jump to search
(Created page with "Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/linearregression.html A linear regression algorithm with optional L1 (LASSO), L2 (ridge) or L1L2 (elastic...")
 
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
  
A linear regression algorithm with optional L1 (LASSO), L2 (ridge) or L1L2 (elastic net) regularization.
+
Widget Linear Regression mengimplementasikan sebuah algoritma linear regression dengan regularisasi optional L1 (LASSO), L2 (ridge) atau L1L2 (elastic net).
  
Inputs
+
==Input==
  
    Data: input dataset
+
Data: input dataset
 +
Preprocessor: preprocessing method(s)
  
    Preprocessor: preprocessing method(s)
+
==Output==
  
Outputs
+
Learner: linear regression learning algorithm
 +
Model: trained model
 +
Coefficients: linear regression coefficients
  
    Learner: linear regression learning algorithm
+
Widget Linear Regression membangun learner/predictor yang akan learn fungsi linear function dari input data-nya. Model dapat mengidentifikasi hubungan antara predictor xi dan response variable y. Di samping itu, parameter regularisasi Lasso and Ridge dapat di spesifikasikan. Lasso regression meminimalisasi penalized version dari least squares loss function dengan L1-norm penalty sedangkan regularisai Ridge dengan L2-norm penalty.
  
    Model: trained model
+
Widget Linear Regression hanya dapat berfungsi / bekerja pada regression task.
  
    Coefficients: linear regression coefficients
+
[[File:LinearRegression-stamped.png|center|200px|thumb]]
  
The Linear Regression widget constructs a learner/predictor that learns a linear function from its input data. The model can identify the relationship between a predictor xi and the response variable y. Additionally, Lasso and Ridge regularization parameters can be specified. Lasso regression minimizes a penalized version of the least squares loss function with L1-norm penalty and Ridge regularization with L2-norm penalty.
+
* The learner/predictor name
 +
* Choose a model to train:
 +
** no regularization
 +
** a Ridge regularization (L2-norm penalty)
 +
** a Lasso bound (L1-norm penalty)
 +
** an Elastic net regularization
  
Linear regression works only on regression tasks.
+
* Produce a report.
 +
* Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.
  
../../_images/LinearRegression-stamped.png
+
==Contoh==
 
 
    The learner/predictor name
 
 
 
    Choose a model to train:
 
 
 
        no regularization
 
 
 
        a Ridge regularization (L2-norm penalty)
 
 
 
        a Lasso bound (L1-norm penalty)
 
 
 
        an Elastic net regularization
 
 
 
    Produce a report.
 
 
 
    Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.
 
 
 
Example
 
 
 
Below, is a simple workflow with housing dataset. We trained Linear Regression and Random Forest and evaluated their performance in Test & Score.
 
 
 
../../_images/LinearRegression-regression.png
 
  
 +
Di bawah ini adalah workflow sederhana dengan housing dataset. Kita men-train widget Linear Regression dan widget Random Forest dan mengevaluasi performance-nya di widget Test & Score.
  
 +
[[File:LinearRegression-regression.png|center|600px|thumb]]
  
 
==Referensi==
 
==Referensi==

Latest revision as of 09:11, 6 April 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/model/linearregression.html


Widget Linear Regression mengimplementasikan sebuah algoritma linear regression dengan regularisasi optional L1 (LASSO), L2 (ridge) atau L1L2 (elastic net).

Input

Data: input dataset
Preprocessor: preprocessing method(s)

Output

Learner: linear regression learning algorithm
Model: trained model
Coefficients: linear regression coefficients

Widget Linear Regression membangun learner/predictor yang akan learn fungsi linear function dari input data-nya. Model dapat mengidentifikasi hubungan antara predictor xi dan response variable y. Di samping itu, parameter regularisasi Lasso and Ridge dapat di spesifikasikan. Lasso regression meminimalisasi penalized version dari least squares loss function dengan L1-norm penalty sedangkan regularisai Ridge dengan L2-norm penalty.

Widget Linear Regression hanya dapat berfungsi / bekerja pada regression task.

LinearRegression-stamped.png
  • The learner/predictor name
  • Choose a model to train:
    • no regularization
    • a Ridge regularization (L2-norm penalty)
    • a Lasso bound (L1-norm penalty)
    • an Elastic net regularization
  • Produce a report.
  • Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Contoh

Di bawah ini adalah workflow sederhana dengan housing dataset. Kita men-train widget Linear Regression dan widget Random Forest dan mengevaluasi performance-nya di widget Test & Score.

LinearRegression-regression.png

Referensi

Pranala Menarik