Difference between revisions of "Orange: Line Plot"

From OnnoWiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Sumber: https://docs.biolab.si//3/visual-programming/widgets/visualize/lineplot.html
 
Sumber: https://docs.biolab.si//3/visual-programming/widgets/visualize/lineplot.html
  
Visualization of data profiles (e.g., time series).
+
Widget Line Plot dapat digunakan untuk memvisualisasi profil data (misalnya, Deret waktu / time series).
  
Inputs
+
==Input==
  
    Data: input dataset
+
Data: input dataset
    Data Subset: subset of instances
+
Data Subset: subset of instances
  
Outputs
+
==Output==
  
    Selected Data: instances selected from the plot
+
Selected Data: instances selected from the plot
    Data: data with an additional column showing whether a point is selected
+
Data: data with an additional column showing whether a point is selected
  
Line plot a type of plot which displays the data as a series of points, connected by straight line segments. It only works for numerical data, while categorical can be used for grouping of the data points.
+
Line plot, jenis plot yang menampilkan data sebagai serangkaian titik, dihubungkan oleh segmen garis lurus. Line Plot berfungsi untuk data numerik. Sementara untuk data kategorikal, Line Plot dapat digunakan untuk pengelompokan titik / poin data.
  
 
[[File:LinePlot-stamped.png|center|200px|thumb]]
 
[[File:LinePlot-stamped.png|center|200px|thumb]]
  
    Information on the input data.
+
* Information on the input data.
 +
* Select what you wish to display:
  
    Select what you wish to display:
+
** Lines show individual data instances in a plot.
 +
** Range shows the range of data points between 10th and 90th percentile.
 +
** Mean adds the line for mean value. If group by is selected, means will be displayed per each group value.
 +
** Error bars show the standard deviation of each attribute.
  
        Lines show individual data instances in a plot.
+
* Select a categorical attribute to use for grouping of data instances. Use None to show ungrouped data.
        Range shows the range of data points between 10th and 90th percentile.
+
* Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances works as a line selection, meaning the data under the selected line plots will be sent on the output. Scroll in or out for zoom.
        Mean adds the line for mean value. If group by is selected, means will be displayed per each group value.
+
* If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.
        Error bars show the standard deviation of each attribute.
 
 
 
    Select a categorical attribute to use for grouping of data instances. Use None to show ungrouped data.
 
 
 
    Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances works as a line selection, meaning the data under the selected line plots will be sent on the output. Scroll in or out for zoom.
 
 
 
    If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.
 
  
 
==Contoh==
 
==Contoh==
  
Line Plot is a standard visualization widget, which displays data profiles, normally of ordered numerical data. In this simple example, we will display the iris data in a line plot, grouped by the iris attribute. The plot shows how petal length nicely separates between class values.
+
Widget Line Plot adalah widget visualisasi standar, yang menampilkan profil data, biasanya berupa data numerik yang diurutkan. Dalam contoh sederhana ini, kita akan menampilkan data iris dalam plot garis, dikelompokkan berdasarkan atribut iris. Plot menunjukkan bagaimana panjang petal memisahkan nilai class dengan baik.
  
If we observe this in a Scatter Plot, we can confirm this is indeed so. Petal length is an interesting attribute for separation of classes, especially when enhanced with petal width, which is also nicely separated in the line plot.
+
Jika kita amati ini dalam Widget Scatter Plot, kita dapat memastikan ini memang benar. Panjang petal adalah atribut yang menarik untuk pemisahan class, terutama ketika ditingkatkan dengan lebar petal, yang juga dipisahkan dengan baik dalam line plot.
  
 
[[File:LinePlot-Example.png|center|200px|thumb]]
 
[[File:LinePlot-Example.png|center|200px|thumb]]
 
  
 
==Referensi==
 
==Referensi==

Latest revision as of 06:54, 18 March 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/visualize/lineplot.html

Widget Line Plot dapat digunakan untuk memvisualisasi profil data (misalnya, Deret waktu / time series).

Input

Data: input dataset
Data Subset: subset of instances

Output

Selected Data: instances selected from the plot
Data: data with an additional column showing whether a point is selected

Line plot, jenis plot yang menampilkan data sebagai serangkaian titik, dihubungkan oleh segmen garis lurus. Line Plot berfungsi untuk data numerik. Sementara untuk data kategorikal, Line Plot dapat digunakan untuk pengelompokan titik / poin data.

LinePlot-stamped.png
  • Information on the input data.
  • Select what you wish to display:
    • Lines show individual data instances in a plot.
    • Range shows the range of data points between 10th and 90th percentile.
    • Mean adds the line for mean value. If group by is selected, means will be displayed per each group value.
    • Error bars show the standard deviation of each attribute.
  • Select a categorical attribute to use for grouping of data instances. Use None to show ungrouped data.
  • Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances works as a line selection, meaning the data under the selected line plots will be sent on the output. Scroll in or out for zoom.
  • If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.

Contoh

Widget Line Plot adalah widget visualisasi standar, yang menampilkan profil data, biasanya berupa data numerik yang diurutkan. Dalam contoh sederhana ini, kita akan menampilkan data iris dalam plot garis, dikelompokkan berdasarkan atribut iris. Plot menunjukkan bagaimana panjang petal memisahkan nilai class dengan baik.

Jika kita amati ini dalam Widget Scatter Plot, kita dapat memastikan ini memang benar. Panjang petal adalah atribut yang menarik untuk pemisahan class, terutama ketika ditingkatkan dengan lebar petal, yang juga dipisahkan dengan baik dalam line plot.

LinePlot-Example.png

Referensi

Pranala Menarik