Difference between revisions of "TensorFlow: Movie Rating Prediction"
Jump to navigation
Jump to search
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
| Line 5: | Line 5: | ||
Source | Source | ||
| + | |||
| + | import numpy as np | ||
| + | import pandas as pd | ||
| + | from scipy import stats | ||
| + | import sklearn | ||
| + | from sklearn.model_selection import train_test_split | ||
| + | import tensorflow as tf | ||
| + | import matplotlib | ||
| + | import matplotlib.pyplot as plt | ||
| + | import seaborn as sns | ||
| + | import math | ||
| + | |||
| + | df = pd.read_csv('fandango_score_comparison.csv') | ||
| + | print(df.head()) | ||
| + | df.rename(columns={'Metacritic_user_nom':'Metacritic_user_norm'},inplace=True) | ||
| + | rankings_lst = ['Fandango_Stars', | ||
| + | 'RT_user_norm', | ||
| + | 'RT_norm', | ||
| + | 'IMDB_norm', | ||
| + | 'Metacritic_user_norm', | ||
| + | 'Metacritic_norm'] | ||
| + | def my_heatmap(df): | ||
| + | import seaborn as sns | ||
| + | fig, axes = plt.subplots() | ||
| + | sns.heatmap(df, annot=True) | ||
| + | plt.show() | ||
| + | plt.close() | ||
| + | my_heatmap(df[rankings_lst].corr(method='pearson')) | ||
| + | RT_lst = df['RT_norm'] >= 4. | ||
| + | my_heatmap(df[RT_lst][rankings_lst].corr(method='pearson')) | ||
| + | |||
| + | |||
| + | feature_cols = ['Fandango_Stars', 'RT_user_norm', 'RT_norm', 'Metacritic_user_norm', 'Metacritic_norm'] | ||
| + | X = df.loc[:, feature_cols] | ||
| + | y = df['IMDB_norm'] | ||
| + | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, random_state=43) | ||
| + | |||
| + | dim = len(feature_cols) | ||
| + | dim += 1 | ||
| + | X_train = X_train.assign( independent = pd.Series([1] * len(y_train), index=X_train.index)) | ||
| + | X_test = X_test.assign( independent = pd.Series([1] * len(y_train), index=X_test.index)) | ||
| + | |||
| + | P_train = X_train.as_matrix(columns=None) | ||
| + | P_test = X_test.as_matrix(columns=None) | ||
| + | q_train = np.array(y_train.values).reshape(-1,1) | ||
| + | q_test = np.array(y_test.values).reshape(-1,1) | ||
| + | |||
| + | P = tf.placeholder(tf.float32,[None,dim]) | ||
| + | q = tf.placeholder(tf.float32,[None,1]) | ||
| + | T = tf.Variable(tf.ones([dim,1])) | ||
| + | bias = tf.Variable(tf.constant(1.0, shape = [dim])) | ||
| + | q_ = tf.add(tf.matmul(P, T),bias) | ||
| + | |||
| + | cost = tf.reduce_mean(tf.square(q_ - q)) | ||
| + | learning_rate = 0.0001 | ||
| + | training_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) | ||
| + | |||
| + | init_op = tf.global_variables_initializer() | ||
| + | cost_history = np.empty(shape=[1],dtype=float) | ||
| + | |||
| + | training_epochs = 50000 | ||
| + | with tf.Session() as sess: | ||
| + | sess.run(init_op) | ||
| + | cost_history = np.empty(shape=[1], dtype=float) | ||
| + | t_history = np.empty(shape=[dim, 1], dtype=float) | ||
| + | for epoch in range(training_epochs): | ||
| + | sess.run(training_op, feed_dict={P: P_train, q: q_train}) | ||
| + | cost_history = np.append(cost_history, sess.run(cost,feed_dict={P: P_train, q: q_train})) | ||
| + | t_history = np.append(t_history, sess.run(T, feed_dict={P: P_train, q: q_train}), axis=1) | ||
| + | q_pred = sess.run(q_, feed_dict={P: P_test})[:, 0] | ||
| + | mse = tf.reduce_mean(tf.square(q_pred - q_test)) | ||
| + | mse_temp = mse.eval() | ||
| + | sess.close() | ||
| + | |||
| + | print(mse_temp) | ||
| + | RMSE = math.sqrt(mse_temp) | ||
| + | print(RMSE) | ||
| + | |||
Revision as of 10:24, 30 July 2019
Download
https://github.com/fivethirtyeight/data/blob/master/fandango/fandango_score_comparison.csv https://github.com/fivethirtyeight/data/blob/master/fandango/fandango_scrape.csv
Source
import numpy as np
import pandas as pd
from scipy import stats
import sklearn
from sklearn.model_selection import train_test_split
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import math
df = pd.read_csv('fandango_score_comparison.csv')
print(df.head())
df.rename(columns={'Metacritic_user_nom':'Metacritic_user_norm'},inplace=True)
rankings_lst = ['Fandango_Stars',
'RT_user_norm',
'RT_norm',
'IMDB_norm',
'Metacritic_user_norm',
'Metacritic_norm']
def my_heatmap(df):
import seaborn as sns
fig, axes = plt.subplots()
sns.heatmap(df, annot=True)
plt.show()
plt.close()
my_heatmap(df[rankings_lst].corr(method='pearson'))
RT_lst = df['RT_norm'] >= 4.
my_heatmap(df[RT_lst][rankings_lst].corr(method='pearson'))
feature_cols = ['Fandango_Stars', 'RT_user_norm', 'RT_norm', 'Metacritic_user_norm', 'Metacritic_norm']
X = df.loc[:, feature_cols]
y = df['IMDB_norm']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, random_state=43)
dim = len(feature_cols)
dim += 1
X_train = X_train.assign( independent = pd.Series([1] * len(y_train), index=X_train.index))
X_test = X_test.assign( independent = pd.Series([1] * len(y_train), index=X_test.index))
P_train = X_train.as_matrix(columns=None)
P_test = X_test.as_matrix(columns=None)
q_train = np.array(y_train.values).reshape(-1,1)
q_test = np.array(y_test.values).reshape(-1,1)
P = tf.placeholder(tf.float32,[None,dim])
q = tf.placeholder(tf.float32,[None,1])
T = tf.Variable(tf.ones([dim,1]))
bias = tf.Variable(tf.constant(1.0, shape = [dim]))
q_ = tf.add(tf.matmul(P, T),bias)
cost = tf.reduce_mean(tf.square(q_ - q))
learning_rate = 0.0001
training_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init_op = tf.global_variables_initializer()
cost_history = np.empty(shape=[1],dtype=float)
training_epochs = 50000
with tf.Session() as sess:
sess.run(init_op)
cost_history = np.empty(shape=[1], dtype=float)
t_history = np.empty(shape=[dim, 1], dtype=float)
for epoch in range(training_epochs):
sess.run(training_op, feed_dict={P: P_train, q: q_train})
cost_history = np.append(cost_history, sess.run(cost,feed_dict={P: P_train, q: q_train}))
t_history = np.append(t_history, sess.run(T, feed_dict={P: P_train, q: q_train}), axis=1)
q_pred = sess.run(q_, feed_dict={P: P_test})[:, 0]
mse = tf.reduce_mean(tf.square(q_pred - q_test))
mse_temp = mse.eval()
sess.close()
print(mse_temp)
RMSE = math.sqrt(mse_temp)
print(RMSE)