Difference between revisions of "IPv6: Tabel Routing"
Onnowpurbo (talk | contribs) |
Onnowpurbo (talk | contribs) |
||
Line 62: | Line 62: | ||
ip route. | ip route. | ||
Example 3-1. The route table for router Lewis of Figure 3-1. | Example 3-1. The route table for router Lewis of Figure 3-1. | ||
− | Lewis#show ip route | + | |
− | Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile | + | Lewis#show ip route |
− | D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inte | + | Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile |
− | N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external | + | D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inte |
− | E1 - OSPF external type 1, E2 - OSPF external type 2, E | + | N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external |
− | i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * -S | + | E1 - OSPF external type 1, E2 - OSPF external type 2, E |
− | C | + | i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * -S |
− | C | + | C |
− | C | + | C |
− | Lewis# | + | C |
− | 10.1.7.0 | + | Lewis# |
− | 10.1.6.0 | + | 10.1.7.0 |
− | 10.1.5.0 | + | 10.1.6.0 |
− | 10.1.4.0 | + | 10.1.5.0 |
− | [1/0] via 10.1.6.2 | + | 10.1.4.0 |
− | is directly connected, Serial1 | + | [1/0] via 10.1.6.2 |
− | is directly connected, Ethernet0 | + | is directly connected, Serial1 |
− | is directly connected, Serial0 | + | is directly connected, Ethernet0 |
+ | is directly connected, Serial0 | ||
+ | |||
Examine the contents of this database and compare it with the generic | Examine the contents of this database and compare it with the generic | ||
table shown for Lewis in Figure 3-1. A key at the top of the table explains | table shown for Lewis in Figure 3-1. A key at the top of the table explains | ||
Line 86: | Line 88: | ||
a C for "directly connected," or an S for "static entry." The statement | a C for "directly connected," or an S for "static entry." The statement | ||
"gateway of last resort is not set" refers to a default route. | "gateway of last resort is not set" refers to a default route. | ||
+ | |||
At the top of the table is a statement indicating that the route table knows | At the top of the table is a statement indicating that the route table knows | ||
of seven subnets of the major network address 10.0.0.0, subnetted with a | of seven subnets of the major network address 10.0.0.0, subnetted with a | ||
Line 95: | Line 98: | ||
Chapter 11, "Route Redistribution." | Chapter 11, "Route Redistribution." | ||
− | + | Metrik, dibahas secara lebih rinci di Bab 4, "Dynamic Routing Protocol, "adalah cara beberapa rute menuju tujuan yang sama dinilai berdasarkan preferensi, semakin rendah metrik, semakin "pendek" jalur dan semakin diinginkan rute. Perhatikan bahwa rute statis yang diperlihatkan dalam Contoh 3-1 memiliki metrik 0. Akhirnya, baik alamat antarmuka yang terhubung langsung dari router next-hop atau antarmuka yang tujuan tujuan terhubung ditampilkan. | |
− | |||
− | |||
− | |||
− | 3-1 | ||
− | |||
− | |||
Revision as of 08:20, 20 March 2019
Untuk memahami jenis informasi yang ada dalam tabel rute, akan bermanfaat untuk memulai dengan memeriksa apa yang terjadi ketika paket tiba di salah satu interface router. Identifier data-link dalam kolom alamat tujuan di periksa. Apakah berisi identifier interface router atau identifier broadcast, router melepaskan frame dan melewati paket di dalamnya ke lapisan jaringan yang lebih tinggi. Pada lapisan jaringan, alamat tujuan paket diperiksa. Jika alamat tujuan adalah alamat IP dari antarmuka router atau alamat broadcast semua-host, kolom protokol paket diperiksa dan data terlampir dikirim ke proses internal yang sesuai.
Ada juga kasus khusus dari alamat multicast, yang diperuntukkan bagi sekelompok perangkat, tetapi tidak untuk semua perangkat. Contoh dari alamat multicast adalah IPv4 kelas D alamat 224.0.0.5 atau IPv6 ff02::x yang dicadangkan untuk semua router yang berbicara OSPF.
Setiap alamat tujuan lainnya akan membutuhkan routing. Alamat tersebut mungkin untuk host di jaringan lain yang terhubung dengan router (termasuk interface router yang terhubung ke jaringan itu) atau untuk host di jaringan yang tidak terhubung langsung ke router. Alamat tersebut juga bisa berupa alamat broadcast langsung, di mana ada jaringan atau alamat subnet yang berbeda, dimana bit host yang tersisa di isi satu semuanya. Alamat-alamat ini juga routeable.
Jika paket akan dialihkan, router akan melakukan pencarian tabel rute untuk mendapatkan rute yang benar. Minimal, setiap entri rute dalam database harus berisi dua hal, yaitu:
- Alamat tujuan. Ini adalah alamat jaringan yang dapat dijangkau router. Seperti yang dijelaskan bagian ini, router mungkin memiliki lebih dari satu rute ke alamat yang sama, atau sekelompok subnet dengan panjang yang sama atau bervariasi, dikelompokkan di bawah alamat jaringan IP utama yang sama.
- Pointer ke tujuan. Pointer ini akan menunjukkan bahwa jaringan tujuan terhubung langsung ke router atau akan menunjukkan alamat router lain pada tautan yang terhubung langsung atau interface lokal ke link tersebut. Router tersebut, yang akan menjadi satu hop router lebih dekat ke tujuan, adalah router hop berikutnya (next-hop).
Router akan mencocokan dengan alamat yang paling spesifik yang dimilikinya. Ada dua prosedur dasar untuk menemukan yang paling cocok, tergantung pada apakah router berperilaku classful atau classless. Dalam urutan spesifisi yang menurun, alamat mungkin salah satu dari yang berikut:
- Host address (rute ke host)
- Subnet
- Group subnet (summary route)
- Nomor network utama
- Group dari nomor network utama (supernet)
- Default address
Jika alamat tujuan paket tidak dapat dicocokkan dengan entri tabel rute apa pun, paket di buang dan pesan ICMP Destination Unreachable dikirim ke alamat sumber.
Figure 3-1 shows a simple network and the route table entries requiredby each router. Of primary importance here is the "big picture," seeing
how the route tables work as a whole to transport packets correctly and
efficiently. The destination addresses that the router can reach are listed
in the Network column of the route tables. The pointers to the
destinations are in the Next Hop column.
Figure 3-1. The minimum information needed for each
route table entry consists of the destination networks and
the pointers to those networks.
[View full size image]
If router Carroll in Figure 3-1 receives a packet with a source address of 10.1.1.97 and a destination address of 10.1.7.35, a route table lookup determines that the best match for the destination address is subnet 10.1.7.0, reachable via next-hop address 10.1.2.2, on interface S0. The packet is sent to that next router (Dahl), which does a lookup in its own table and sees that network 10.1.7.0 is reachable via next-hop address 10.1.4.2, out interface S1. The process continues until the packet reaches router Baum. That router, receiving the packet on its interface S0, does a lookup, and sees that the destination is on one of its directly connected subnets, out E0. Routing is completed, and the packet isdelivered to host 10.1.7.35 on the Ethernet link. The routing process, as explained, assumes that the router can match its listed next-hop addresses to its interfaces. For example, router Dahl must know that Lewis's address 10.1.4.2 is reachable via interface S1. Dahl will know from the IP address and subnet mask assigned to S1 that S1 is directly connected to subnet 10.1.4.0. It then knows that 10.1.4.2, a member of the same subnet, must be connected to the same data link. Notice that every router must have consistent and accurate information for correct packet switching to occur. For example, in Figure 3-1, an entry for network 10.1.1.0 is missing from Dahl's route table. A packet from 10.1.1.97 to 10.1.7.35 will be delivered, but when a reply is sent from 10.1.7.35 to 10.1.1.97, the packet is passed from Baum to Lewis to Dahl. Then, Dahl does a lookup and finds that it has no entry for subnet 10.1.1.0, so the packet is dropped, and an ICMP Destination Unreachable message is sent to host 10.1.7.35. Example 3-1 shows the route table from router Lewis of Figure 3-1. The IOS command for examining the IP route table of a Cisco router is show ip route. Example 3-1. The route table for router Lewis of Figure 3-1.
Lewis#show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inte N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external E1 - OSPF external type 1, E2 - OSPF external type 2, E i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * -S C C C Lewis# 10.1.7.0 10.1.6.0 10.1.5.0 10.1.4.0 [1/0] via 10.1.6.2 is directly connected, Serial1 is directly connected, Ethernet0 is directly connected, Serial0
Examine the contents of this database and compare it with the generic table shown for Lewis in Figure 3-1. A key at the top of the table explains the letters down the left side of the table. These letters indicate how each route entry was learned; in Example 3-1, all routes are tagged with either a C for "directly connected," or an S for "static entry." The statement "gateway of last resort is not set" refers to a default route.
At the top of the table is a statement indicating that the route table knows of seven subnets of the major network address 10.0.0.0, subnetted with a 24-bit mask. For each of the seven route entries, the destination subnet is shown; for the entries that are not directly connectedroutes for which the packet must be forwarded to a next-hop routera bracketed tuple indicates [administrative distance/metric] for that route. Administrative distances are introduced later in this chapter and are covered in detail in Chapter 11, "Route Redistribution."
Metrik, dibahas secara lebih rinci di Bab 4, "Dynamic Routing Protocol, "adalah cara beberapa rute menuju tujuan yang sama dinilai berdasarkan preferensi, semakin rendah metrik, semakin "pendek" jalur dan semakin diinginkan rute. Perhatikan bahwa rute statis yang diperlihatkan dalam Contoh 3-1 memiliki metrik 0. Akhirnya, baik alamat antarmuka yang terhubung langsung dari router next-hop atau antarmuka yang tujuan tujuan terhubung ditampilkan.